

# **Microwave Plasma Assisted Chemical Vapor Deposition Process Variable Optimization of Nitrogen Doped Single Crystal Diamond**

Sarah P. Roberts<sup>1</sup>, Alex J. Loomis<sup>1</sup>, Nathan G. Jansen<sup>1</sup>, Aaron Hardy<sup>2</sup>, Jonas N. Becker<sup>1,2</sup>, Shannon S. Nicley<sup>1,2</sup>

<sup>1</sup> Quantum Optical Devices Laboratory, Michigan State University, 567 Wilson Rd, East Lansing, MI 48824, USA <sup>2</sup> Coatings and Diamond Technologies Division, Center Midwest (CMW), Fraunhofer USA Inc., 1449 Engineering Research Ct., East Lansing, MI 48824, USA

| <b>roduction</b><br>amond is a strong<br>ndidate for quantum | presents a materials<br>engineering challenge of<br>precision control of this<br>defect system. The first | <ul> <li>Experimental Setup</li> <li>Microwave Plasma Assisted CVD Reactor</li> <li>Microwave Source frequency: 2.45GHz</li> </ul> | Sample<br>ID | H <sub>2</sub> Flow<br>Rate<br>(SCCM) | CH <sub>4</sub> Flow<br>Rate<br>(SCCM) | N <sub>2</sub> in H <sub>2</sub> Flow<br>Rate<br>(SCCM) | Gas Phase<br>N <sub>2</sub> conc.<br>ppm | Temperature<br>(°C) | Pressure<br>(mbar) |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|----------------------------------------|---------------------------------------------------------|------------------------------------------|---------------------|--------------------|
| vices due to its ultra-                                      | step to combating this                                                                                    | <ul> <li>Microwave power adjusted to maintain</li> </ul>                                                                           | SR21e        | 400                                   | 16                                     | 17.5                                                    | 48                                       | 950                 | 290                |
| de band gap and the                                          | challenge requires control                                                                                | temperature                                                                                                                        | SR21b        | 400                                   | 16                                     | 17.5                                                    | 48                                       | 1000                | 290                |
| tope. <sup>12</sup> C. having zero                           | of the substitutional                                                                                     | Microwave power supply                                                                                                             | SR21c        | 400                                   | 16                                     | 17.5                                                    | 48                                       | 1050                | 290                |
| clear snin [1]                                               | nitrogen that can later be                                                                                | P <sub>inc</sub> , P <sub>ref</sub> , P <sub>abs</sub>                                                                             | 21 08/19     | 368                                   | 16                                     | 16.5                                                    | 50                                       | 950                 | 250                |





### Conclusions

Int

• Dia

cal

de

WI

m

ISO

- The ideal deposition temperature was concluded to be 950°C due to the smooth step flow growth and moderate growth rate.
- FTIR absorption peaks at 1330 cm<sup>-1</sup> and 2930 cm<sup>-1</sup> appear correlated with an
- 1330 cm<sup>-1</sup> and 2930 cm<sup>-1</sup> correlate to quality of crystal
- Sample color post deposition could be

| 1330 cm <sup>-1</sup><br>FTIR | ≈0                | Local<br>max       | Decrease          | ≈0                 |
|-------------------------------|-------------------|--------------------|-------------------|--------------------|
| 2930 cm <sup>-1</sup><br>FTIR | ≈0                | Local<br>max       | Decrease          | ≈0                 |
| Growth Rate                   | 19.12 ±<br>0.6 um | 25.04 ±<br>0.91 um | 23.0 ±<br>1.23 um | 30.44 ±<br>1.79 um |
|                               |                   |                    | Pill              |                    |

- Peaks observed at 1330 cm<sup>-1</sup> and 2930 cm<sup>-1</sup> decreases as growth pressure increase
  - Peak observed at 1080 cm<sup>-1</sup> increased as growth pressure increased
  - Single phonon absorption related to nitrogen defect at 1095 cm<sup>-1</sup> and 1327 cm<sup>-1</sup> [8,9]



## **Ultra-Violet/Visible Spectroscopy (UV-Vis)**

- Absorbance spectra normalized to thickness of grown layer
- Used to quantify defect responsible for color observed after deposition Band at 360 nm related to vacancy clusters [10]

