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Abstract
In near-vacuum-hohlraum inertial confinement fusion experiments, the ion’s 

mean free path is too long for the system to be sufficiently described by the 

hydrodynamic equations [1]. To simulate such systems, extended moment 

hydrodynamic models are employed [2]. Interestingly, the additional moments 

include dissipative processes that return the system to equilibrium where fewer 

moments are sufficient. An obvious reduced order model is one that reduces the 

extended moments as the system equilibrates. To do this well, the reduced order 

model must identify when fewer moments will suffice. In this study, we use data 

driven techniques to observe Grad's 13 moment hydrodynamic equations reduce 

to Navier-Stokes (N-S) 5 moment description [3].

 Our computational tools come from the emerging field of data driven 

dynamical systems. Modern algorithms, rooted in the Koopman operator 

framework, approximate nonlinear systems of equations as linear ones. In this 

study, we employ dynamic mode decomposition (DMD) to observe our 

dynamical system equilibrate to its slow manifold [4]. Moreover, we supplement 

our DMD findings by using dimension reduction techniques to observe 

equilibration in an ensemble of simulations; this offers a clear visualization of 

the equilibration process.

Moment reduction in Grad’s eqns
At linear order, expanding Grad’s hydrodynamics about equilibrium (i.e. 𝜀 →
0) produces the N-S equations [3]. This expansion process can be interpreted 

as computing Chapman-Enskog closures (e.g. 𝜎 = −
4

3
𝛻𝑥𝑢 and 𝑞 = −

5

2
𝜕𝑥 𝑇). 

In this work we consider the Fourier transform 𝜌(𝑥, 𝑡) = σ−∞
+∞ 𝜌𝒌𝑒𝑖𝑘𝑥 of the 

these PDE’s.

Observation of dimension reduction in Grad’s eqns
In Figure 1, we demonstrate that after equilibration N-S equations are a reduced model of Grad’s moment equations. In Figure 2, we plot 

Rowes and Saul’s inverse reconstruction error [5] to observe principal component analysis’ (PCA) ability to reduce the ensemble’s 

dimension. We demonstrate that the data can reduce from 10 (5 complex values) to 6 dimensions at late times; which matches the reduction 

from Grad’s moments (𝜌𝑘 , 𝑢𝑘 , 𝑇𝑘, 𝜎𝑘 , 𝑞𝑘 each is a complex value) to N-S moments (𝜌𝑘 , 𝑢𝑘 , 𝑇𝑘). 

Identification of the slow manifold in Grad’s eqns 
In Hartman-Grobman theory, the Jacobian of a non-linear system is used near an equilibrium to linearize. As an improvement, the 

Koopman operator can be used away from equilibrium to linearize the dynamics. Like the Jacobian, the eigensystem of the Koopman 

operator characterizes the slow manifold [6]. DMD is a known way to discover a finite dimensional representation of the Koopman 

operator, 𝐾 and its eigenvalues Λ and vectors Ψ. We conduct DMD on a window of the data (i.e. subsection of the sequential data 

represented as a blue band in Figure 3: left). Windowed DMD produces a timeseries of eigenvalues, see in Figure 3: right. We observe that 

two of the eigenvalues have an absolute value that differs by many orders of magnitude by 𝑡 = 0.5, which is a similar time scale as seen in 

the dimension reduction plots. Furthermore, plots of the similarity between the DMD eigenvectors at time 𝑡𝑖 and 𝑡𝑗 are presented in Figure 

4. We observe that after 𝑡 = 0.5, DMD rediscovers the same  eigenvector; this indicates that the slow manifold has been identified. 
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Figure 3 – Left: Description of DMD on a sliding window. Blue band represents the sliding window. Right: timeseries of DMD eigenvalues. 

Figure 4: Plot of the similarity between DMD eigenvectors across the timeseries. Similarity measured by complex dot product.
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Navier-Stokes eqns work here!
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Figure 2 – Left (top): Formulation of the reconstruction 

error. 𝑊𝐵𝐶 and ෩𝑊𝑅𝐵𝐶  are barycenter weight matrices in 

either the full coordinates 𝑋 or PCA reduced coordinates 𝑌. 

Left (bottom): Visualization of the row elements of each 

barycenter weight matrix. Right: Plot of the reconstruction 

error. We vary the quantity of PCA basis vectors along the 

y-axis and the time along the x-axis. 
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Figure 1 – Left: Representation of an ensemble (𝑁 = 10,000) of 

simulations equilibrating according to Grad’s eqns towards a slow 

manifold (image altered from [3]). Right: A sample trajectory from the 

ensemble. We initialize N-S eqns to the Grad’s moment values at time 

t = 0 (top) and 𝑡 = 0.5 (bottom); the black bar marks initial conditions..
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