

Eli Feinberg^{1,2}, Tom Byvank², Nikolaus Christiansen², Kevin P. Driver³, Christopher L. Fryer², Robert F. Heeter³, Lauren Hobbs⁴, Heather Johns², Lynn Kot², Pawel Kozlowski², Carolyn Kuranz¹, D. D. Meyerhofer², Yekaterina P. Opachich³, Theodore S. Perry², Shon Prisbrey³, Harry Robey III², Dean Rusby³, Derek Schmidt², Todd Urbatsch², and Sean Finnegan² | ¹University of Michigan, ²Los Alamos National Laboratory, ³Lawrence Livermore National Laboratory, ⁴Atomic Weapons Establishment

Halfraum Simulation in CASSIO

A multi-physics, Eulerian radiation hydrodynamics code

- Cartesian mesh with Adaptive Mesh Refinement (AMR).
- Laser ray tracing and deposition.
- 80-group Implicit Monte Carlo (IMC) x-ray transport.
- 3T, diffusive electron and ion conduction.

Vet model with drive data from **NIF shot N200615**

XFLOWS moves successful **COAX** campaign to NIF

This diagnostic platform is a powerful tool for the study of x-ray flow at different temperatures and in different materials.

Introduction

XFLOWS is an experimental platform that uses the power and capability of the NIF to study x-ray flow in a new way. Initially, the project with focus on observing supersonic x-ray flow in uniform foams and will study the supersonic to subsonic transition. In the future, we hope to study x-ray flow in exotic materials such as stochastic media.

Platform goals require a Planckian temperature source, with customizable temperature and duration.

How to design a halfraum:

- **1** Start with something known.
- 2 Use data of known thing to validate computational model.

3 Apply computational model to new designs

References

¹Moore *et al.*, JQSRT, **159**, (2015); ²LLNL Report, COPD-2022-0185; ³Dodd et al., POP, **25**, 063301 (2018); ⁴Barnak *et al.*, RSI, **91**, 073102 (2020)

Considering a suite of previously tested hohlraums

CASSIO models of halfraums driving XFLOWS foam

Half McFee-Apollo is promising; needs to be hotter for supersonic flow.

Hotter source needed to measure supersonic flow

This work was supported by Los Alamos National Laboratory, an affirmative action/equal opportunity employer, which is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. 89233218CNA000001. And by the U.S. Department of Energy NNSA Center of Excellence at the University of Michigan under cooperative agreement number DE-NA0003869.

