

Space Charge Effects on the Evolution of Short Pulse Beam Profiles

Yves Heri, Peng Zhang*

Michigan State University, Electrical and Computer Engineering, East Lansing, MI, USA *pz@egr.msu.edu

Summary

- We investigate **space charge effects** on the dynamics of short pulse beam profile.
- We consider **short pulses** of different profiles for different charge densities and pulse widths.
- We analyze the electron sheet **phase-space** trajectories and pulse profile evolution during gap transit.

Multiple-Sheet Model

A one-dimensional (1D) planar diode with gap distance d and gap voltage $V_{q_{r}}$ with M sheets inside.

Figure 1: Sheet numbering inside the diode gap [1]

- Sheet *j* at position $\bar{x}_i = x_i/d$ has a normalized charge density $\bar{\rho}_i = \rho / \sigma_1$.
- The normalized electric field on sheet *j* is

$$\bar{E}_{j} = \frac{E_{j}}{E_{0}} = 1 + \left[\sum_{i=1}^{M} \bar{\rho}_{i} \bar{x}_{i} - \left(\sum_{i=1}^{j-1} \bar{\rho}_{i} + \frac{1}{2} \bar{\rho}_{j}\right)\right]$$
(1)

• The normalized Electric field at the cathode

$$(\bar{x} = 0)$$

 $\bar{E}_{K} = 1 + \sum_{i=1}^{M} \bar{\rho}_{i}(\bar{x}_{i} - 1)$ (2)

• The Space Charge Limited (SCL) charge density $\bar{\rho}_i^*$ is found for $\bar{E}_K = 0$

$$1 + \sum_{i=1}^{M} \bar{\rho}_i(\bar{x}_i - 1) = 0$$
 (3)

Model Parameters

Symbol	Meaning	Formula/Value
E_0	Applied field	$-V_g/d$
σ_1	SCL density	$\varepsilon_0 E_0$
$ au_p$	Pulse length	$[0.1, 1] \times T_0$
T_0	Transit time	$\sqrt{2d/(eE_0/m)}$
Δ	Distortion	$\delta \bar{x}_{final} / \delta \bar{x}_{init}$
J	Current density	$3\sum_{i=1}^{M}\bar{\rho}_i\bar{v}_i$

(a) Square-top Profile

- Sheets have equal charge density $\bar{\rho}$
- The charge density $\bar{\rho}^*$ is found from (3)

$$\bar{\rho}^* = \frac{1}{M} \left[\frac{1}{1 - \delta \bar{x} \left(\frac{M-1}{2} \right)} \right] \tag{4}$$

• We simulate 30 preloaded sheets inside the gap. The initial pulse intervals $\delta \bar{x}$ $= \bar{x}_n - \bar{x}_{n+1}$ are assumed to be uniform

Figure 2: Trajectories & current density for T_0 and $\bar{\rho}^*$

(b) Trapezoidal Profile

A more general square-top model that include a time of rise and a time of fall

$$\rho_{j} = \begin{cases} \rho_{0} + (j-1)\frac{\rho_{1} - \rho_{0}}{n_{r}}, & 1 \le j < n_{r} \\ \rho_{1}, & n_{r} \le j < (M) \\ \rho_{0} + (M-j)\frac{\rho_{1} - \rho_{0}}{n_{f}}, & (M-n_{f}) \le j \end{cases}$$

 ρ_0 and ρ_1 are respectively the lowest and highest charge density.

Figure 5(a): Profile distortion with initial pulse length and and charge charge

Comparison of pulse profiles

• We compare pulses of different charges and shapes.

- **Case 1**: We vary the total charge but keep the pulse shape unchanged.
- **Case 2**: We maintain the total charge but vary the shape

Evolution of the Gaussian Pulse Profiles Inside the Gap

Figure 9: Evolution of pulse profile, electric field, and velocity for Case 1.

(c) Gaussian Profile

• Sheet *j* has a **charge density**

$$\bar{\rho}_j = a \exp\left[-\frac{(j-\mu)^2}{b}\right] \quad (5)$$

 $-n_{\star}$ where $\mu = (M + 1)/2$, *a* and *b* are found by solving (3) with $\sum_{i=1}^{M} \bar{\rho}_i^* = 1$. (as the $\leq j \leq M$ bulk of sheets tends to combine, looking like a single sheet).

Figure 6: Electron energy distribution at the anode

Child-Langmuir limit

• We simulate Gaussian pulses with M = 30 preloaded sheets. We fixed $\delta \bar{x} = 1/M^2 = 1/900$. • Single sheet model $J_{crit} = \frac{3J_{CL}}{4X_{CL}}$ • Equivalent diode approximation 011304 (2017). -J_{CL}

a function of the normalized pulse length.

Figure 10: Evolution of pulse profile, electric field, and velocity for Case 2.

Algorithm 1 Calculation of distortion		
	Input: $M, \delta \bar{x}$	
1:	$\delta \bar{x}_{init} \leftarrow (M-1)\delta \bar{x}$	
2:	$t \leftarrow 0$	
3:	while $\bar{x}_1(t) < 1$ do	
4:	$t \leftarrow t+1$	
5:	end while	
6:	$\delta \bar{x}_{final} \leftarrow \bar{x}_1(t) - \bar{x}_M(t)$	
7:	$\Delta \leftarrow \delta \bar{x}_{final} / \delta \bar{x}_{final}$	
8:	return Δ	

Conclusion & Future Work

- For the same total charge, square-top and Gaussian pulses undergo similar distortion (fig.<u>5).</u>
- The shorter the pulse length, the more significant the distortion becomes.
- ⁶ The smaller the charge, the faster the tail of the pulse travels through the gap (fig. 8).
- The Child-Langmuir limit increases as the pulse length decreases.

References & Acknowledgement

1 C. Birdsall and W. Bridges (1966). Electron dynamics of diode regions. New York: Academic Press

2 P. Zhang et al., Applied Physics Reviews 4,

3 A. Valfells et al., Physics of Plasmas 9(5), 2377-2382 (2002).

4 C. Kaur et al., Physical Review E 106(5-2), 055203 (2002).

Acknowledgement: Work is supported by the Office of Naval Research (ONR) YIP Grant No. N00014-20-1-2681, the Air Force Office of Scientific Research (AFOSR) Grant No. FA9550-20-1-0409, and the Air Force Office of Scientific Research (AFOSR) Award No. FA9550-22-1-0523

Download the poster:

https://tinyurl.com/4tfcvceh

