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Multi-fidelity Bayesian optimization algorithm automatically searches the
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This algorithm leverages both high- and low-fidelity simulations to quickly and
efficiently search the design space. = Multi-fidelity surrogate models help pass information from the low fidelity 120 - —
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Inertial confinement fusion (ICF) design relies on complex simulation : : : : : iteration
codes with large design parameter spaces To aid rapid debugging of our algorithm, we substitute the HYDRA
simulator with an approximate neural network = Knowledge gradient (KG) results in incremental improvement
= ICF at NIF uses a gold hohlraum and 192 lasers e = Max-value entropy search (MES) prioritizes low-fidelity exploration, and
to drive a capsule containing fusion fuel e o Neural network approximator to HYDRA is constructed as follows: accumulates information before making an informed decision
. 1. Build a database of 1D HYDRA simulations in an 8-parameter design space —Benefits from a final recommendation step (in progress)

"ICF experiments are developed by teams of
design experts who use several high-fidelity  beams
multi-physics codes [1] to build their designs Inner cone

beams

“/Hohlraum 2. Train a neural network on high (burn on) and low (burn off) fidelity simulations
Pl caceile to create a high-fidelity and a low-fidelity model
3. Substitute high- and low-fidelity HYDRA simulations in the algorithm with
corresponding neural network

= Neural networks are able to handle large scaling and nonlinearity required
in high dimensional problems

—delUQ in above figure outperforms GP surrogate model
=The design space spans over at least a few

dozen independent parameters /Z/m Since the neural network test function is an approximation to HYDRA, success We are beginning to evaluate performance of the algorithm with HYDRA
on the test problem is a positive sign for future ICF design optimization

fully integrated in the optimization loop

Our automated workflow directly optimizes the

Traditional design optimization workflow uses . S -
lower-level experimental design parameters Yield optimization results using delUQ + KG

higher-level physics parameters [3]

Yield optimization results using GP + KG
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Bayesian Optimization process: step = 3 =2 S
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2. Build a model to fit observed (=7 /o TESe— === objective fn (/() . 3 6 9 L 15 18 iteration
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data and quantify uncertainty ¥ sequisiian sk
(surrogate model) ., fm\/\ Results from algorithm optimizing yield in an 8-parameter design space. (top) Yield of ] S-Parame.ter scan using HYDRA [1] chooses both high- and low-fidelity
3. Determine the next candidate step = 4 each point chosen by the algorithm over 19 iterations. Algorithm preferentially points as It progresses
points to sample usingthe | == chooses high-fidelity simulations, possibly due to low correlation between burn off = Next steps include scaling to larger number of candidate points and moving
acquisition function " and burn on yield. (bottom) Highest yield found by the algorithm so far. Consistent to 2D simulations
4. Sample the next point and add e opservaton improvement in max yield found shows algorithm is performing as expected = Eventually, we hope to modify the cost function and optimization algorithm
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