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Inertial confinement fusion (ICF) design relies on complex simulation 
codes with large design parameter spaces To aid rapid debugging of our algorithm, we substitute the HYDRA 

simulator with an approximate neural network

Optimization algorithm shows promise when applied to ICF test problem
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Bayesian Optimization process:
1. Observe data points
2. Build a model to fit observed 

data and quantify uncertainty 
(surrogate model)

3. Determine the next candidate 
points to sample using the 
acquisition function

4. Sample the next point and add 
it to our set of data points

5. Repeat

§5-parameter scan using HYDRA [1] chooses both high- and low-fidelity 
points as it progresses

§Next steps include scaling to larger number of candidate points and moving 
to 2D simulations

§Eventually, we hope to modify the cost function and optimization algorithm 
to search more specific design spaces (e.g. designs robust to surface 
roughness of capsule)

Neural network approximator to HYDRA is constructed as follows:
1. Build a database of 1D HYDRA simulations in an 8-parameter design space
2. Train a neural network on high (burn on) and low (burn off) fidelity simulations 

to create a high-fidelity and a low-fidelity model
3. Substitute high- and low-fidelity HYDRA simulations in the algorithm with 

corresponding neural network

Since the neural network test function is an approximation to HYDRA, success 
on the test problem is a positive sign for future ICF design optimization

§Multi-fidelity Bayesian optimization uses cost-aware acquisition functions 
that automatically balances the cost of running more expensive, more 
informative simulations vs. less expensive, less informative ones
—e.g. Knowledge Gradient (KG), Max-value entropy search (MES)

§Multi-fidelity surrogate models help pass information from the low fidelity 
simulations to the high-fidelity surrogate
—e.g. Gaussian Process (GP), Neural Network with uncertainty (delUQ)
—Allows Bayes opt to explore the search space more quickly and intelligently

§ In our tests, high- and low- fidelity simulations are conducted with and 
without thermonuclear burn, respectively 
— In practice, the two (or more) fidelities will have more distinct run times to 

better exploit the faster lower fidelity simulations

§ ICF at NIF uses a gold hohlraum and 192 lasers 
to drive a capsule containing fusion fuel

§ ICF experiments are developed by teams of 
design experts who use several high-fidelity 
multi-physics codes [1] to build their designs

§The design space spans over at least a few 
dozen independent parameters 

§Knowledge gradient (KG) results in incremental improvement 
§Max-value entropy search (MES) prioritizes low-fidelity exploration, and 

accumulates information before making an informed decision
—Benefits from a final recommendation step (in progress)

§Neural networks are able to handle large scaling and nonlinearity required 
in high dimensional problems 
—delUQ in above figure outperforms GP surrogate model

We are beginning to evaluate performance of the algorithm with HYDRA 
fully integrated in the optimization loop

Bayesian optimization (Bayes opt) can be leveraged as a powerful tool 
for automating ICF design

Using a multi-fidelity approach avoids the need to run many expensive 
high-fidelity simulations

Results from algorithm optimizing yield in an 8-parameter design space. (top)  Yield of 
each point chosen by the algorithm over 19 iterations. Algorithm preferentially 
chooses high-fidelity simulations, possibly due to low correlation between burn off 
and burn on yield. (bottom) Highest yield found by the algorithm so far. Consistent 
improvement in max yield found shows algorithm is performing as expected

Multi-fidelity Bayesian optimization algorithm automatically searches the 
design parameter space for higher yield implosions  

Traditional ICF design involves hand-tuning key physics levers in simulation to 
optimize yield. We employ an automated approach based on Bayesian 
optimization that can directly tune the experimental design parameters to 
improve the yield. 

This algorithm leverages both high- and low-fidelity simulations to quickly and 
efficiently search the design space. 

iteration
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Yield optimization results for several methods

Optimizing an 8-parameter design for yield using our algorithm. Figure 
shows the highest yield found as the algorithm progresses.

Yield optimization results using delUQ + KG
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Experimental design 
parameters:
- hohlraum dimensions, 
Lamé curvature, gas fill 
density
- capsule layer thicknesses 
and dopants
- lasers pulse shape and 
pointing

Traditional design optimization workflow uses 
higher-level physics parameters [3]

Our automated workflow directly optimizes the 
lower-level experimental design parameters


