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Mercury's Magnetosphere

Mercury has the most similar magnetosphere to Earth, as both are rocky
vlanets with externally-driven dipole fields. However, they differ by:

= Weaker field (~ 1% of Earth), resulting in ion gyroradius comparable to
Mercury's radius

= Large conductive core and insulating crust instead of ionosphere

= Seasonally varying solar wind conditions with low Alfven Mach number
which favors dayside reconnection
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Figure 1. Magnetosphere under different solar wind (IMF) directions. From Slavin et al. 2012.

Southward IMF (B, < 0) promotes substorms, where magnetic flux loads in
the lobes. This flux is released through reconnection at Near Mercury Neutral

Line (NMNL,) flowing planetward as a dipolarization front (Dewey et al. 2020).

Dipolarization fronts exhibit cross-tail asymmetry (Liu et al. 2019; Bard and
Dorelli 2021), low density, and high flow speeds (Birn et al. 2011). They are
cenerated Iin current sheet and propagate planetward, before slowing and
diverting, generating cross-tail current:
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Substorm current wedge is hypothesized to be created through inertial current
term, and close through conductive core (Kepko et al. 2015).

MHD-AEPIC

MHD-AEPIC is a coupled fluid-kinetic simulation tool implemented through the
Space Weather Modelling Framework. A global magnetohydrodynamic (MHD)
solver evolves the magnetosphere, and adaptively embedded particle-in-cell
(AEPIC) code models current sheet.

MHD: BATS-R-US solves single fluid equations on non-regular spherical mesh.
Runs In steady-state mode to initialize domain, and then time-accurate for
dipolarization front analysis. Hall physics (differential ion and electron motion)
included to capture dayside reconnection.

PIC: FLEKS (Flexible Exascale Kinetic Simulator) evolves macroparticles through
Cartesian grid to compute particle distribution function (Chen et al. 2023).
Two-way couples to BATS-R-US at domain boundary.

https.//clasp.engin.umich.edu/people/cushen-alexander/

Project Objectives

= Generation and propagation Under what solar wind conditions are
dipolarization fronts generated?

= Substorm role How important are dipolarization fronts in particle and
magnetic flux transport during a substorm?

= Planetary coupling Are dipolarizations front able to form a continuous
substorm current wedge, and explain observations of low-altitude
dipolarization regions?

Simulation Configuration
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Figure 2. x-z and x-v slices of simulation domain; FLEKS region shown with orange border.
Shading is plasma density. Magnetic field lines shown in white. Mesh grid shown in grey.

Nominal run is 45 s FLEKS simulation, using 3 x 10> CPU hours on NASA
Plelades. Fluid data from FLEKS region saved at 0.05 s cadence. |dealised
solar wind conditions chosen to drive substorm activity:
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Dipolarization Front Tracking

1. At each timestep, compute 075:

7. Give a reference number to all

4. Exclude any clusters with lifespan
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Figure 3. Colored regions correépond to identified DFs and their flux tubes. Current sheet,
shaded by 0B,, extracted as smoothed surface of max plasma beta in FLEKS domain.
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Figure 4. Red shaded region is total cross-tail flux transport rate. Lines are time-resolved
transport rate for tracked DFs, and colored by distance to planet s = v X2 + Y2
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Figure 5. Trajectories of tracked DFs in the projected current sheet. Arrows show averaged
inertial and pressure gradient current terms at 0.5 s cadence.
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