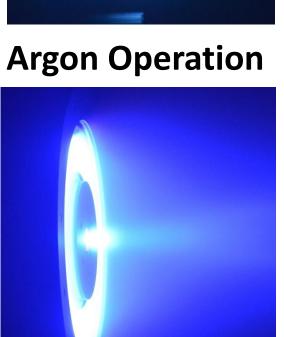

Mass Utilization Scaling with Propellant Type on a Magnetically Shielded Hall Thruster

William Hurley and Benjamin Jorns University of Michigan, Ann Arbor

Introduction

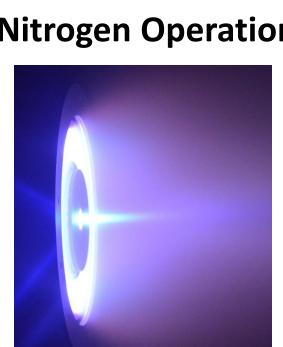
- Hall thrusters electrostatically accelerate ions to produce thrust → overall device efficiency dependent on how well the input neutrals are ionized (η_m)
- Most Hall thrusters are optimized for xenon due to its large mass and ionization cross section \rightarrow xenon cost is driving a growing interest in other propellants like krypton, argon, and nitrogen



Key point: Mass utilization (η_m) for harder to ionize alternative gases (krypton, argon, nitrogen) is typically low, driving down overall performance [1-3].

Goal: Develop a simple mass utilization model and validate it with experimental data on xenon[1], krypton[1], argon, and nitrogen.

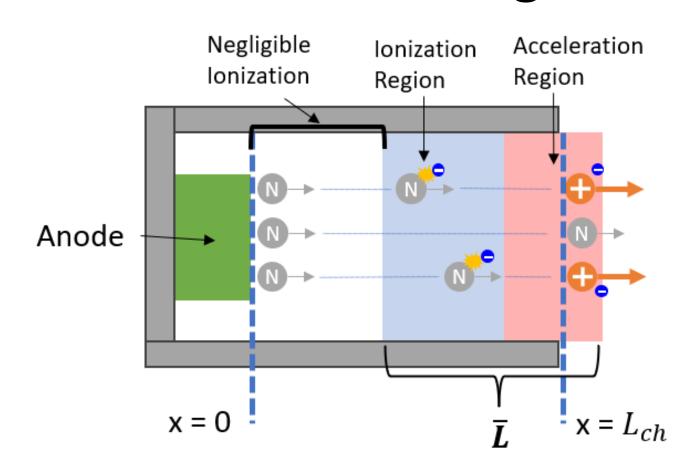
Experimental Campaign


Xenon Operation [1]

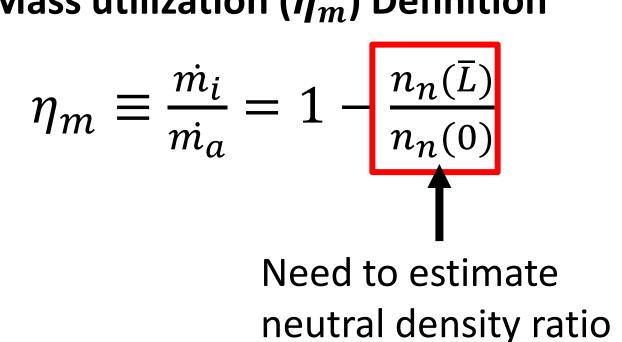
Kryp	iton Ope	eration [
	A	
	7	

Nitrogen Operation

Test Article	H9	
Facility	LVTF	
Discharge Voltage (V)	200, 300 V	
Propellants	Xenon, Krypton, Argon, Nitrogen	
Diagnostics	Faraday, Langmuir, ExB	


Inferring mass utilization η_m with far-field probes

$$\eta_m \equiv \frac{\dot{m}_i}{\dot{m}_a} = \frac{I_b}{\dot{m}_a} \sum \frac{\Omega_s m_s}{q_s}$$


Variable	Description	Probe/ Instrument
ṁ	Mass flow rate	Mass flow controller
I_b	Ion beam current	Faraday probe
$\Omega_{\scriptscriptstyle S}$	Ion current fractions	ExB probe

0-D Mass Utilization Model

Hall thruster discharge channel

Mass utilization (η_m) Definition

Mass flow rate Density onization rate

1D steady state	depletes neutrals	
$rac{dn_n}{dt} + rac{dn_n}{dx}$	$v_n + \frac{dv_n}{dx}n_n = -1$ Constant neutral velocity (no	$n_n n_e k_{iz}(T_e)$

Electron impact

Neutral velocity Channel length relevant for ionization

Integrate continuity equation along channel length

$$\frac{n_n(\bar{L})}{n_n(0)} = \exp(-\frac{\bar{L}}{\lambda_i})$$

$$\eta_m = 1 - \exp(-\frac{\overline{L}}{\lambda_i})$$

$$\lambda_i = rac{v_n}{k_{iz} n_e}$$
 | Ionization Mean

Plasma Density: $oldsymbol{n_e}$

Constant beam utilization, cathode coupling

voltage, and width of acceleration region [1,5]

Electron Collision Frequency is Bohm-like [6-7]

Ohms law $j_e = \frac{L}{\eta(n_e)}$

Estimating model parameters

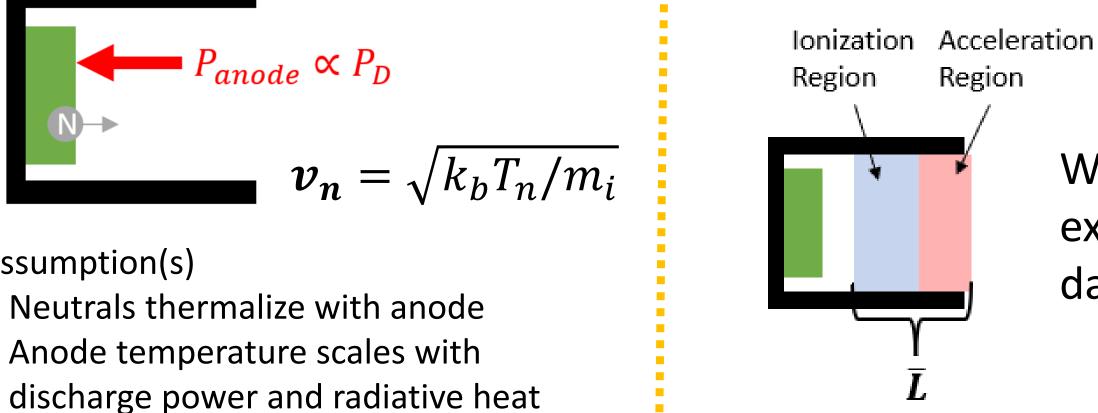
Ionization Rate: $k_{iz}(T_e)$ Electron Temperature (eV)

Assumption(s)

Assumption(s)

- Maxwellian electrons
- Electron temperature scales with discharge voltage $0.1 V_d[4]$

Neutral Velocity: $v_{
m n}$


Neutrals thermalize with anode

Anode temperature scales with

transfer dominates

Characteristic length: $\overline{m{L}}$

Neglect pressure terms in ohms law

Assumption(s)

We learn \overline{L} from experimental data

 j_D : Discharge

 V_D : Discharge

B: Magnetic Field

Voltage

Results

Key Takeaways

- The model captures all the data within experimental uncertainty
 - The data spans 4 gases across many disparate operating conditions
- Both the mass utilization data and model asymptote to unity (all propellant ionized) with decreasing λ_i
- The fit quality indicates we are capturing some of the underlying physics driving mass utilization

Summary

- We developed a model to predict Hall thruster ionization fraction as a function of both gas type and operating condition
- We generated a large experimental data set for model validation
- The model shows excellent agreement with the experimental data, corroborating our assumptions
- The validated model could assist with future thruster designs

Acknowledgements

We would like to thank Parker Roberts, Madison Allen, Tate Gill, Chris Sercel, Thomas Marks, Collin Whittaker and Eric Viges for their role in performing these tests. This work was supported by an NSTRGO fellowship #80NSSC23K1187

References

[1] Su, Leanne L., et al. "High-current density performance of a magnetically shielded hall thruster." Journal of Propulsion and Power (2024): 1-18 [2] Marchioni, Francesco, and Mark A. Cappelli. "Extended channel Hall thruster for air-breathing electric propulsion." Journal of Applied Physics 130.5 (2021). [3] Munro-O'Brien, Thomas F., and Charles N. Ryan. "Performance of a low power Hall effect thruster with several gaseous propellants." Acta Astronautica 206 (2023): 257-273. [4] Goebel, Dan M., Ira Katz, and Ioannis G. Mikellides. Fundamentals of electric propulsion. John Wiley & Sons, 2023. [5] Cusson, Sarah E., et al. "Acceleration region dynamics in a magnetically shielded Hall thruster." Physics of Plasmas 26.2 (2019). [6] Fife, John Michael. Hybrid-PIC modeling and electrostatic probe survey of Hall thrusters. Diss. Massachusetts Institute of Technology, 1998. [7] Koo, Justin W., and Iain D. Boyd. "Modeling of anomalous electron mobility in Hall thrusters." Physics of Plasmas 13.3 (2006)