Influence of Temporal Shapes of Femtosecond Laser Pulses on Photoemission from a Metal Surface
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We Investigate photoemission from an Au surface subjected to a weak DC field and a femtosecond laser 2 s i eéig,sec_hlz %
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1. Theoretical Formulation + DC field 7, = 0.001 V/nm
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we define —L <t <L, where T, = 2L is the time (a)l-o T,=2fs (b?.o= 7,= 10 fs ¢ = 0: b=5.99 (m=1), 2.44 (m=3), 2.12 (m=5), 2.05 (m=10), 2.61 (cos?), 5.85 (sech?)
period of the femtosecond laser pulse in a pulse train. ﬂ | ¢ = m: b=6.00 (m=1), 2.07 (M=3), 1.92 (m=5), 1.96 (M=10), 2.55 (cos?), 6.18 (sech?)
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> One-dimensional time-dependent Schrodinger equation » Time/space-dependent emission current density w(e, x, t)/<w>

near the metal-vacuum interface is [4], "
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where wy,(e) denotes the time-averaged current density (i.e. electron transmission probability) through the n- + Pulse length 7, = 10 fs,

photon process. * Red line Is the corresponding laser field for reference.
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1\V. Conclusion

1. The emission spectrum shape correlates with the
laser frequency spectrum shape: shorter pulse
lengths (broader spectra) produce broader emission
spectra, while longer pulse lengths (narrower
spectra) result In narrower emission spectra.

2. For very short pulse lengths with broad spectra
that approaches the effective work function,
differences in pulse shapes have little impact on the
total emission current density.

3. For longer pulse lengths with narrower spectra;
much smaller than the effective work function, the
Influence of pulse shape on electron emission
decreases as pulse length increases.

4. With a fixed pulse length, the emission current
Induced by narrower spectra laser rises more rapidly
than by broader spectra laser as the intensity
Increases.

5. The effect of the CEP is influenced by both pulse
length and laser Intensity. The laser intensity
required to observe CEP effects on emission current
IS lower for narrower spectra laser than for wider
spectra laser.

6. The spatiotemporal emission current density Is
different for various femtosecond pulse profiles.
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