Optimization of substitutional phosphorus in n-type diamond
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Why Phosphorus-doped diamond? Challenges Developing the Process

Major potential for quantum applications. Phosphorus’s large atomic radius prevents it from incorporating into the carbon lattice as easily as
boron and nitrogen.

The conductivity of P-doped diamond is reduced when phosphorus is passivated by hydrogen
atoms, impurities, and PV centers!on

Even in high-quality samples, the relatively deep donor level results in a low carrier concentration at . " .
Longer spin-coherence times in P-doped diamond increase BT e BErEIE, oxide mask deposition, and a second diamond growth step.

sensitivities of NV sensors, improve quantum fidelity, and Therefore, creating useful n-type diamond materials requires high phosphorus concentrations and .
extend guantum-memory timess. few crystalline imperfections. P-doped diamond growth

Our Goal V4

Samples will be characterized by atomic force microscopy for surface
analysis, x-ray diffraction determination of miscut orientation, and
FTIR and UV-Vis spectroscopies. The conductivity will be determined
by Hall effect measurements, which will require photolithography,

Much lower activation energy for P-doped diamond (0.6 eV)!
than N-doped diamond (1.7 eV)2, which is an insulator at room
temperature.

Progress in the Field To determine.optimi.zed growth conditions for n-type cgnductivity of 'highly-dop'ed dia-monql, we will Selective SiO, deposition
grow two series of single-crystal P-doped diamond, an isothermal series and an isobaric series, and %

NV centers implanted within p-i-n junctions made of CVD diamond " forize th o<’ bhysical and electrical "
can be used as single-photon sources, which have applications in characterize the samplies physical ahd electrical Properties. Si0, deposition e/

gquantum communication, computing, and metrology”. Diamond Growth M Photoresist patterning

Buffered-oxide etch %

Photoresist removal

Samples will be grown by Microwave-Plasma Assisted Chemical Vapor Deposition using PH; gas on (111)
1~ 1018 cm3 I oriented single-crystal diamond substrates. Growth occurs within the reactor chamber where the
‘ . electrical Conta(.D process gasses flow through a quartz dome. The diamond reaction is sustained by a plasma that is

—— sparked by resonant microwaves. The temperature of the sample is measured with an optical pyrometer. W?
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| Lift off had to be developed to avoid
Implanting an NV center directly in P-doped diamond stabilizes the 1 beading of the photoresist on

NV~ state, which has major uses in guantum information processing Attaching the Hall effect probes small diamond samples
applications, over the undesirable NV© state>6. et =
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(Right) Two planned series of sample growths: isobaric (S1) and isothermal (S52).
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