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Antimatter Trap Experiments Provide the Accounting for Anisotropy Formation, 4 Distinct Molecular Dynamics (MD) Simulations are a First-Principles Approach
Opportunity to Test Novel Plasma Theory Temperatures can Exist in an lon-Electron Plasma of to Benchmark Theory

Predictions Arbitrary Magnetization Strength (11 rates) MD simulations performed with LAMMPS [3]

Thermostat brings system to equilibrium configuration

Scale velocities of each species such that a 10% temperature difference is created
 Extra thermostat is used to bring each species to its equilibrium spatial configuration at its new temperature
 Turn on magnetic field

* Novel plasma physics predications could be tested[1],[2] .
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