Fluid Model Performance Predictions of a Coaxial Electrodeless
Magnetoplasmadynamic (E-MPD) Thruster
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Benefits of E-MPD Thruster

High Power Densities = Favorable
geometric scaling for high power
applications

Electrodeless - Eliminate common
failure point & allow for the ability to
operate on alternative propellants

Challenge: Efficiency to date has been < 3%

We created a quasi-1D plasma-neutral fluid model to characterize the
dominate loss processes of a conical E-MPD. [1]
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How do we improve performance?
Boost momentum power by boosting Lorentz force.
Accomplished by increasing the radial applied field.

Grace Zoppi, Tate Gill, Christopher Sercel, and Benjamin Jorns
University of Michigan, Department of Aerospace Engineering, Ann Arbor, Ml 48109

Coaxial E-MPD Design

What would an ideal thruster look like to boost the applied
radial field?

An annular geometry with strong magnets surrounding the plasma
discharge region.

As proof of concept, we will use a recycled Hall thruster to approximate
this geometry, allowing for faster and cheaper design development.
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RMF Antennas

Solution—> Add ferrite
shielding to concentrate
the magnetic field flux
to the channel.

Problem = HG6 iron
core will consume the
power from the RMF
antennas.

ldea =2 Insert RMF
antennas into H6
geometry.

Modifying the H6, by adding three-phase antennas and ferrite shielding,
allows for RMF generation at stronger rotating and applied field
strengths.
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*Modeling only the MAP point of the posterior free parameter set.

Conclusions

Overall, the model predicts that the coaxial E-MPD thruster geometry will improve
performance due to the higher available magnetic field strengths. Increasing the Lorentz
force boosts momentum power, significantly reducing fractional power losses. Additionally,
the annular geometry enhances mass utilization efficiency by increasing particle density at

equivalent flow rates.
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