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Hall thrusters are the most widely flown form of electric propulsion.
Despite their widespread use, their electron dynamics remain poorly “ g
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The overall scaling coefficient (c) is adjusted for each set of }‘Df‘m Plasma density model —— | 2.  Model cannot simultaneously place ion velocity
powers (,p,t) until the integrated velocity error (IVR) is :?QED | places ion velotity, but not and electron temperature curves in line with
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