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IV. Conclusion

1. The emission energy spectrum can be tuned by
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1. Background 111. Results

1. Electron emission 1s important to many applications ranging from accelerators and ultrafast electron > Compare J as a function of T from quantum model to from Richardson-Dushman formula
diffraction/microscopy to high-power microwave sources and electric-propulsion cathodes.

varying the laser intensity, wavelength, and cathode

Without laser

=== Richardson-Dushman
== (Quantum model

temperature. Increasing the peak laser field and using
Richardson-Dushman Equation: shorter wavelengths both enhance the emission

. Photon-assisted thermionic emission (PATE) leverages optical excitation to amplify electron release from
heated cathodes, enabling higher current density at a given temperature—or equivalent performance at
lower heater power—than dark thermionic emission alone.

J = AT2e~%/ksT spectrum and reduce the relative differences between

. In RF/DC electron guns, microwave tubes, and propulsion cathodes, optical assistance can reduce warm-
up time and heater load, relax vacuum requirements at a fixed current density, and help preserve cathode
lifetime by lowering operating temperature [1-2].

spectra at different temperatures. Photon-assisted
thermionic emission (PATE) can substantially

TABLE I. Key parameters for thermionic materials and com-
mon laser wavelengths/energies.

Tungsten LaBe CeoBq increase the overall emission and broaden the

energy distribution.

In this work, we investigate PATE from tungsten (W) and lanthanum hexaboride (LaBs)—refractory emitters Tungsten Pork function eV] Aem-?K-7] Ton e A
with different work functions—using a quantum model that solves the one-dimensional Schrodinger equation 4=120 AJem? K2 Melting point [K] 3695 2483 2463 2. At low temperature, laser illumination can

Common laser wavelengths and photon energies
Wavelength [nm|] 800 532 405 355 266
Photon energy [eV] 1.55 2.33 3.06 3.49 4.66

exactly [3-4]. strongly enhance the emitted current from the hot

500 1000 1500 2000 2500 3000 cathode, demonstrating the improved performance

T [K]

and characteristic behavior of photon-assisted

The properties of LaB6 and CeB6 are from Ref [6].

thermionic emission.

I1. Theoretical Formulation [3-5)

» Emission energy spectra of Tungsten (4 = 800 nm) 3. Increasing the cathode temperature enhances

F,=0 V/nm F,=0.01 V/nm F,=0.1V/nm F,=0.5V/nm thermionic emission and therefore increases the
il == | =%t [ =" - quantum efficiency (QE), since a larger fraction of
. . ! s T=2000 K s T=2000 K wn T=2000 K wen T=2000 K . .
> Potential profile: S e oo Tk LN ] electrons 1in the thermal tail can overcome the
N“‘ s T=300 K ’ e T=300 K w—T=300 K | = T=300 K | .. )
(o, . <0 g 05 05 w0} 03 emission barrier.
P(x,t) = Er+W—elF,x —eF(t)x x>0 : | 4. For PATE, the inclusion of temperature as a
S0 107} 107" 107 control parameter provides greater flexibility 1n
» 1D Time-dependent Schrodinger equation: | | tailoring and enhancing the QE.
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D(e) = i wy (),

n=—oo

» QE in varying work functions and varying peak laser strengths (4 = 355 nm)

where w,, (¢) denotes the electron transmission probability through the n-photon process.

F1=0.000015 V/nm W=3.52 eV
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» The total emission current density:

F y [V/nm]

LaBé6

] — ef D(S) N(S)dé‘ — f ]spectrum(semitted) dsemitted:
0 0

where N(g) = Z:ZL 7; In[1 + exp (b;{F _Te)] 1s the supply function derived from the free electron model for metal, and

Jspectrum (Eomitteq) 1S the differential current density per energy (A/cm?eV), which represents the emitted
photoelectron energy spectrum with €,,;::0q = € + nhw the emitted electron energy.

» Quantum efficiency (QE)

_J/e
QF = I/how’

where [ = gycF# /2 is the incident laser intensity, with ¢ the speed of light in vacuum.
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Experiment data is from reference [1].
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