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Background

Post-test photo showing erosion of the magnetic

voles Pole erosion has superseded discharge

channel erosion as the life-limiting
mechanism of Hall thrusters

Plasma instabilities drive ion heating

1. Waves extract

energy from
E electrons

2. Plasma waves such as the modified two
stream instability (MTSI) and lower
hybrid drift instability (LHDI) are thought
to dominantly contribute to pole erosion
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Waves deposit
energy toions \
\ 3. Measurements of these waves are
critical to understanding the exact

3. High-energyions i
| processes causing life-limiting erosion

erode poles at an
anomalous rate €
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Anti-aliasing Analysis Technigue Results
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Conclusion

* Anti-aliasing algorithm is able to reconstruct ion acoustic dispersion without
aliasing

e Cathode operated at
61.1A on 22 sccm
Krypton

* We are able to infer magnitude and direction of wave propagation
* We have demonstrated this technique can be used to detect waves with
wavelengths < 1 mm such as MTSI/LHDI

* Anti-aliasing probes
allow for in-situ
adjustment of probe
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