Multiscale Modeling of Radical and Vibrational Pathways in Plasma-
Assisted Ammonia Synthesis on Fe(110) and Ni(111)

Oluwatosin A. Ohiro™ Samuel A. Ogunwale, Bryan R. Golds mith
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48104, US A

Goldsmith

Lab
MICHIGAN
ENGINEERING

UNIVERSITY OF MICHIGAN

Background and Motivation Modeling Methodology R eaction Mechanism Elucidation Results

10
* The Haber—Bosch process for ammonia (NH; ) synthesis is responsible for 1-2% of global energy * We study plasma species generated in RF reactor interactions in a packed bed reactor (PBR) 0] = N
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New CCﬂ'd'Yi'IC teChnOIOQY is needed for sustainable ammonia synihe5|s 1l Nag), v \— on Fe(110) and Ni (111) metal surface. Operating conditions: 1 Fe(110) and Ni (111) metal surface at various LTP RF power for
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Low temperature plasma (LTP) assisted catalysis is a potential complement to traditional thermocatalytic

composition: 0.5% Ny, 2.5% Hyg), 97 % Ar,). LTP species are
species are generated in the upstream RF plasma reactor before

atm, 517 K, 1T SLM total flow rate. Feed gas composition: 0.5%
NQ(g)l 2.5% H2(g), 97 % Ar(g).

. . . [2]
chemical conversion processes, such as NH3(g) synthesis. before entering the PBR. N* densities = 1X10'4 em~3, He

densities = 1X10' cm—3.

* Activate difficult molecules (e.g., N,) and enhance reactivity at low temperature
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molecule J \ O / \ i - | - - - - * Fe turnover rate is improved in the presence of H radicals, indicating that thermal NHj; , production is limited
vibrationally excited + O ° o L b due to the absence of H radicals.
species X(v) O e We achieve parity in metal performance when all limiting reactants are indued in the model
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radicals Gas phase reactions * A synergistic effect is seen in overall NH; , density when all LTP-generated species are included in the model
fons ’ o Model parameters are computed via density functional theory (DFT) and mean-field microkinetic models are (i.e. Ny, THy )+ N + He)
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5555 Fe Q 10 ° A Langmu,r—HmsheIwood Reactions EIey—R,deaI Reactions Figure 8. (a, b) Gas densities along the length of the PBR on (a) Fe and (b) Ni catalyst. Vibrationally excited N, ,, are shown in grayscale, only the
0.01 1 é 10 4 ° . . , . , . v | | first six vibrational levels are shown for visual clarity. (¢, d) Elementary reaction rates along the reactor. Langmuir Hensel wood reactions are in grey,
1' 5 (;6 6 0'6 . . . ! 0 10 20 30 40 [ I \ E-R reations are in blue on (¢) Fe and (d) Ni. Operating conditions: 1 atm, 517 K, 1 SLM total flow rate. Feed gas composition: 0.5% Ny ), 2.5%
T e ' -1.0 —0.5 0 0.5 Vibrational level v 12 HQ(g), 97 % Ar(g). LTP species are generated in the upstream RF plasma reactor before entering the catalytic bed. N* densities = 1 X10'* cm™3, He
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Figure 2. Comparison of N ,, Figure 3. Measured NH;, STYs in the DBD Figure 4. Upper bounds on the ratio of rates of I
distribution-weighted (plasma-on) and  reactor on metal /Al,O5 catalysts as a function  dissociative adsorption to the rates of N, over Fe, 103 . . . . . . .
thermal (plasma-off) NH3(g).[3] of the DFT-calculated nitrogen adsorption Ni, and Ag metal wool catalysts as a function of * Faster EIey—Rldeql kinetics dominate reaction pCﬂ'hWCIy for NH3(g) pl‘OdUCTIOh
energy. T =438 K. vibrational level at the experimental surface ~ 10 * He are consumed at a much faster rate than Ne densities. When present, H* become the dominant source of
I
temperature Z s hydrogenation.
E 10 * Increase in Ny, ,—o at reactor outlet is due to quenching reaction of higher excited states and recombination
* Initial computational results show orders of magnitude differences in NH; ) production when only N, are s 1072 of Ne
consider only. High vibrational levels with lower dissociation barriers lead to higher reaction rate for NH; v
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* The identity of most active metal for NH; ) synthesis changes from prior computational analysis 10 1 .
* Experimental results show similar orders of magnitude of NH;, production across metals 072 ConCI us I ons Refe rences
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