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❑
This work studies the interaction of an annular electron

beam with a cavity gap.

❑
We provide a parametric analysis of beam-cavity

interaction for large signals of linear beam device.

❑
We compare the gap coupling factor of annular and

solid beams for the same beam current.

❑
We observe the effect of space charge on the electron

trajectories and their kinetic energy which leads to

lower conversion efficiency.

Abstract Methodology

A. Electron velocity and Kinetic Energy 

Results
▪ At higher frequencies, PRF (solid lines) and η of the single gap-

cavity device drop significantly

▪ At 5GHz, using 𝑐 = 5mm and 𝐼𝑅𝐹 =1.9 A, PRF (η) for annular beam

calculated from disk model with space charge is 16.9kW (56.9%)

which are higher compared to solid beam of 11.49kW (38.3%).

▪ At 18GHz, we vary 𝑐 while setting 𝑉𝑎=50kV, 𝑏 = 7.2mm, RF current

𝐼𝑅𝐹=1.9A.

▪ For 𝑐 =7.15mm, PRF (η) is 20.58kW (34.6%) for disk model with

space charge, which are significantly higher than solid beam (c =

0) of 1.93kW (3.03%).

Scaling to High Frequency

Methodology
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Fig. 1. Interaction gap of an annular linear beam device [1] 

➢ Disk Model

▪ Space charge Field, 𝐸𝑆𝐶 =

4ρc
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Fig. 2. Space charge potential for outside (𝑧 > 𝑧0) and inside (𝑧 > 𝑧0, 𝑧 < 𝑧0)

▪ Equation of motion,
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• DC beam power of the disk model,
PDC = KE0 × f

• RF power transferred to the gap from the change in KE
PRF = KE0 − KEmax × f

• Efficiency of the linear beam device,

η =
PRF
PDC

=
KE0 − KEmax × f

KE0 × f

TABLE II. List of Symbols

a

b

Tunnel radius

Outer Beam radius
c Inner Beam radius
ρc Space charge density
ω

Ib
IRF
Q

ηe

Angular frequency

Beam current

RF current

Disk Charge

Charge/mass ratio

Anode Voltage, Va 25kV

Load Impedance, RL 26kΩ

Frequency, f 1.3Ghz

Number of Disks, ND 50

Disk length, L

Output gap Length, g

0.8mm

11mm

TABLE I. Parameters for Calculation [2]

➢ Analytical Model

• Wave number, 𝛽 =
ω

u

• Small Signal Gap Coupling Coefficient,
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• Large Signal Gap Coupling Coefficient,
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• RF Output Power, PRF =
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• Electronic Efficiency, 𝜂 =
Pout

IbVa

➢ Disk Model

• Axial component of Electric Field, 
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Results

Fig. 3. Comparison of M of simple and disk 

model as a function of different RF current for 

annular and solid beam

A. Constant Current Density and Beam Current

▪ Default outer and inner beam

radius : b=8.2mm & c=5mm.

▪ c/b=0.6 has same current density

as solid beam b=6.5mm [2].

▪ Gap coupling factor, M is higher

for annular beam.

▪ At 𝐼𝑅𝐹 = 1.4A ,M calculated from

annular disk model is 0.7, which

is 4.64% higher than the solid

beam [2].

Fig. 4. Comparison of (a) M and (b) PRF (solid lines) and η (dotted lines) from simple and disk 

model with space charge for different c/b and compared with PIC results using XOOPIC.

▪ For a larger c/b, simple and disk models show a higher M due to

closer interaction with the gap and reduced space charge effects

than in a solid beam (c/b = 0).

▪ Reduction of M due to space charge effects is smaller in an annular

beam.

▪ PRF and η increase with a larger c/b,

▪ Enhanced electromagnetic coupling & reduced space charge effects

lead to more effective energy transfer from beam to cavity fields.

➢ Normalized Gap Coupling Factor
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▪ Increase of normalized ത𝑎 and ҧ𝑔
lowers M for the annular beam,

which is similar to solid beam [2]

▪ Increase of normalized ത𝑏 and ҧ𝑐
increases M.

B. Constant Outer Beam Radius and Beam Current

Fig. 6. Comparison of (a) M and (b) PRF (solid lines) and η (dotted lines) from 

simple and disk model for different c and compared with PIC results (XOOPIC).

▪ Increasing 𝑐 increases the charge density as cross-sectional area of

beam is decreased due to the fixed 𝑏 and total current.

▪ For a larger 𝑐 , simple and disk models show a higher 𝑀
▪ Space charge effects show a reduction of up to 1.17% in 𝑀 at

𝑐 =5mm, which is lower than solid beam.

▪ PRF and η increase with a larger c, confirmed with PIC results

(XOOPIC).

C. Electron Velocity and Kinetic Energy

▪ The green line (when 𝑐/𝑏 =0) indicates a solid beam.

▪ In Fig. 7a and Fig 8a, beam cross-sectional area is constant and 𝑏 is

used as 6.5mm, 7.5mm and 9.5 mm for c/b = 0, 0.5, and 0.7

▪ In Fig. 7b, and Fig 8b, 𝑏 is fixed and 𝑐 varies as 0, 5 and 6.49mm

▪ Increasing 𝑐 causes a reduction in final electron velocity, indicates

that more energy is transferred from beam to the microwave field.

▪ Normalized 𝐾𝐸(= (σ𝐾𝐸 /𝑁𝐷)/𝐾𝐸0 ) decreases when 𝑐 increases,

where 𝐾𝐸0 and σ𝐾𝐸 are initial and total kinetic energy.

▪ A reduction in 𝐾𝐸 indicates more efficient energy transfer from the

electron beam to the RF fields.

Fig. 8. Normalized 𝐾𝐸 of disk model with space charge for different c/b of fixed 

beam current (a) with constant charge density and (b) with fixed 𝑏

Fig. 7. Normalized velocity of disk model with space charge for different c/b of 

fixed beam current (a) with constant charge density and (b) with fixed 𝑏

Fig. 9. Comparison of PRF (solid lines) and η (dotted lines) for a single gap-cavity 

device (a) between annular and solid [2] beam for different RF current at 𝒇 =
5GHz (C-band)  (b) for different 𝑐 when 𝑏=7.2mm at 𝒇 =18GHz (K-band). 
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Conclusion
• We have analysed the gap coupling factor for annular beam-gap

interaction, using both large signal analytical model and disk model.

• We provide parametric scaling analyses and quantitative

assessment on how increasing the ratio of inner and outer beam

radius increases the gap coupling factor.

• Future studies may extend the investigation to other beam profiles,

including sheet and multi-beam configurations.

• Examine electron bunching dynamics to enable more efficient and

compact high-frequency amplifiers.

• Our method may also be extended for multiple cavity devices, such

as CC-TWTs.

Future Works

Fig. 5. Comparison of M as a function of 

(a) ҧ𝑐 and ത𝑎, (b) ҧ𝑐 and ҧ𝑔, (c) ҧ𝑐 and ത𝑏
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