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Why are interchange events important?
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== Many short-lived or narrow IEs
* Fine IE “striping” of plasma spectra
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Heavy, moon-origin ions dominate plasma density
throughout the entire magnetospheric system

High mass tube High mass tube

== |E-signatures in spectra most organized in u,
* Many sharp jumps between negative (inflow)
and positive (outflow), coincide with IE “stripes
* Inflows rarely more than 50 km/s

* IEs play major role in global plasma circulation 2 *;
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However, many guestions remain regarding IEs:
=P \Nhat conditions trigger interchange onset?

== Density and temperature highly fluctuating
* Neither clearly dependent on sign of u,
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=% \What is the structure or shape of individual |IEs?

P = What is the global distribution IE occurrence?
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Example FM fit of JADE (0.01-46.2 keV/q) TOF data

What are the main takeaways?

At Saturn, IEs have also been extensively observed and statistically evaluated with in-situ data

1) Density and temperature excursions may be used as a method to expand IE datasets

nts/s)

* Interchange events often occur in clusters, similar to what is seen at Jupiter _ b o
2) The plasma properties within Jovian interchange events depend strongly on R,

Interchange formation would thus depend on:
including how certain heavy-ion species (S*, O%* ) become more or less prominent
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