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Novel parameter regime: continuous 
transfer of  flow energy ➔ magnetic energy
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Table 1: Formulary of important dimensionless quanti-
ties.

Recently, several experiments in-
vestigating self-generation of magnetic
fields have been carried out using flows
of liquid metals (either sodium or
gallium) as a conducting medium to
achieve the high Rm values needed to
investigate magnetic field generation.
Liquid metals are conducting, satisfy
the MHD equations, and require no
magnetic field to provide initial confine-
ment and hence can easily satisfy the
C ! 1 criteria. For very idealized,
laminar velocity fields the critical value
of Rm for self-generation of magnetic
fields is predicted by theory to be around 100. The conductivity of sodium (which melts at 100 C)
is a decreasing function of temperature (like all metals) and numerically equal to 107 mho-m, so
that Rm ≈ 12LmUm/s [experiments investigating self-excitation require L ∼ 1 m, and V ∼ 10 m/s
so to achieve marginally large enough Rms to be in an interesting MHD regime]. To achieve these
parameters using liquid sodium in an experiment of radius L=0.5 m requires a mechanical input
power of Pmech ∼ 100 kW. Unfortunately, turbulent flows have the somewhat unfavorable scaling
of Rm ∝ (PmechL)

1
3 . To increase Rm by an order of magnitude (from Rm=10 to Rm=1000)

in a sodium experiment of similar size would require 100 MWs!! This is a serious limitation for
addressing the broader range of plasma processes listed above.

Plasma Process Rmcrit Re C λ
L β

large scale dynamo
laminar ! 100 < 100 ! 1 - -
with turbulence ! 500 > 1000 ! 1 - -

small scale dynamo ! 500 ! 1000 ! 1 ? ?
MHD turbulence ! Re ! 1000 ∼ 1 - -
MRI
with mean field ! 10 — " 1 ? ?
without mean field ! 15000 — ! 1 ? ?

B field stretching ! 100 < 100 ∼ 1 - -
Plasma Instabilities ! Re ! 1000 " 1 ! 1 % 1

Table 2: Dimensionless parameter criteria required for each of the
plasma processes addressed in the text.

In particular, it would
be interesting to investigate
dynamo activity with Rm

values that would be sev-
eral orders of magnitude
larger than those achiev-
able in present and planned
liquid sodium experiments:
plasmas are obvious candi-
dates for such experiments.
In plasmas, unlike liquid
metals, the conductivity in-
creases with temperature
and since plasmas are much
less dense they can be made
to flow at high speeds for a given amount of power. For plasmas the conductivity increases as T 3/2;
To match the conductivity of sodium, a singly ionized plasma requires an electron temperature of
630 eV, plasma temperatures that are only found in fusion experiments using strong, externally
applied magnetic fields to thermally insulate the hot plasma from cold walls. However, plasma
flows can be efficiently driven to much higher speeds since the density is much lower. Thus for a

3

C ≤ 1
100 ≤ Rm

1 ≪ Re

Pm ≡ Rm/Re 
T ≥ µσL2 Quasistationary

For plasma experiments: steady-state, 
large, flowing, unmagnetized, hot 
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The Earth’s Dynamo: large scale dipole

 Glatzmaier and Roberts, A three-dimensional self-
consistent computer simulation of a geomagnetic 
field reversal, Nature  377 203 (1995).

Rm~500-1000, Re=109, Pm=10-6, τσ=105 yrs
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 Jackson, Jonkers and Walker, Four centuries of geomagnetic 
secular variation, Phil. Trans. R. Soc. Lond. A  358 957 (2006).

+ smaller scale fluctuations
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The Sun’s dynamo: oscillatory 
and mostly small-scale

Rm~108, Re=1011, Pm=10-3, τσ=1011 yrs
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+ weak large scale field
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Rm~1014, Re=109, Pm=105, τσ=1023 yrs

Galactic Magnetic Fields: weak large-scale 
field + much stronger small-scale 
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Black Hole

Magnetized 
Jets

Disks and Jets around Black Holes

Rm~1019, Re=1014, Pm=105
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Galaxy Cluster Abell 2597

Rm~1029, Re=1025, Pm=104
Saturday, December 12, 2009



Poorly Understood, Fundamental Plasma and MHD 
Processes Can Benefit from Experimental Studies

 Large Scale Dynamo:  What is the size, structure and dynamics of 
the mean magnetic field created by high magnetic Reynolds number 
flows—particularly rotating flows? 

 Small Scale Dynamo:  How do turbulent (high Rm) flows create 
turbulent magnetic fields? What is the nature of plasma turbulence 
when magnetic fields and velocity fields are in near equipartition?  

 Magnetorotational Instability:  How is angular momentum transport 
by magnetic instabilities? Can the MRI be a dynamo?

 Flow Driven Reconnection:  How does plasma flow generate 
magnetic energy that can accumulate and ultimately be released in 
explosive instabilities? 

 Plasma Instabilities:  Do plasma instabilities beyond MHD play a role 
in collisionless, turbulent plasma flows? 
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Minimum requirements for experimentally 
addressing each Plasma Process

Large, High Te, fast flowing 
plasmas Low B, fast flowing 

plasmas

smaller), while in other cases, like the Sun, much of the magnetic field energy can be considered as
turbulent.
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Table 1: Formulary.

Plasma Process Rmcrit Re C λ
L β

large scale dynamo
laminar ! 100 < 100 " 1 - -
with turbulence ! 500 > 1000 " 1 - -

small scale dynamo ! 500 ! 1000 " 1 ? ?
MHD turbulence ! Re ! 1000 ∼ 1 - -
MRI
with mean field ! 10 — " 1 ? ?
without mean field ! 15000 — " 1 ? ?

B field stretching ! 100 < 100 ∼ 1 - -
Plasma Instabilities ! Re ! 1000 " 1 ! 1 $ 1

Table 2: Dimensionless parameters required for addressing each
plasma process.

The process by which this
happens varies from one sit-
uation to another, but one
common essential feature
which is necessary for dy-
namos is that the magnetic

Reynolds number, Rm, be
large: Rm ≡ µ0σLU is a di-
mensionless parameter con-
structed from the conductiv-
ity σ, the size of the object
L, and the characteristic ve-
locity U and quantifies the
ratio of generation of mag-
netic field by sheared flows
and the dissipation by electrical resistivity. Table 2 gives an estimate of the minimum value of
Rm needed for studying the processes listed above. It is very important to recognize that these
processes can be investigated without matching their corresponding astrophysical values.

Recently, several experiments investigating self-generation of magnetic fields have been carried
out using flows of liquid metals (either sodium or gallium) as a conducting medium to achieve the
high Rm values needed to investigate magnetic field generation. Liquid metals are conducting,
satisfy the MHD equations, and require no magnetic field to provide initial confinement and hence
C " 1. For very idealized, laminar velocity fields the critical value of Rm for self-generation of
magnetic fields is predicted by theory to be around 100. The conductivity of sodium (which melts
at 100 C) is a decreasing function of temperature (like all metals) and numerically equal to 107

mho-m, so that Rm ≈ 12amUm/s: experiments which investigate self-excitation require a ∼ 1 m,
and V ∼ 10 m/s so to achieve marginally large enough Rms to be in an interesting MHD regime.
To achieve these parameters using liquid sodium in an experiment of radius L=0.5 m requires a

3

630 eV, plasma temperatures that are only found in fusion experiments using strong, externally
applied magnetic fields to thermally insulate the hot plasma from cold walls. Plasmas flows, how-
ever, can be efficiently driven to much higher speeds. Thus for a plasma experiment of similar size
(a = 1 m) to achieve similar parameters to the sodium experiment (Rm = 100) would simultane-
ously require an electron temperature of only Te = 10 eV and a velocity U = 2.2 km/s, modest
parameters which should be readily achievable using low temperature plasmas as outlined below.

For completeness, we note the importance of the resistive equilibration time for the experiment
which is also closely related to the conductivity and size of the plasma. For spherical systems, this
is often defined to be to be τσ = µ0σa2

τσ = 0.8
T 3/2

e,eV

Z
a2

m msec, (2)

where a is the radius of the spherical plasma. This time sets the time scale for typical growth and
decay of magnetic fields. The lifetime of and astrophysical object, the amount of time simulated
numerically, and the pulse-length of any experiment investigating dynamo phenomena all need to
be long compared to this characteristic timescale.

plasma radius 1.5 m
ρe 0.75 m
ρi 65 m
ρe,cusp 10−6 m
ρi,cusp 10−3 m
λi,mfp 10−4 — 0.05 m
λe,mfp 0.1—10 m

Table 2: Characteristic length scales for the
plasma parameters corresponding to Te = 10
eV, Ti = 1 eV, ne = 1017—1019 m−3, central
magnetic field of B = 0.2× 10−4 Tesla, and a
cusp field of B = 1 Tesla.

Power Requirements.
It is instructive to examine the power require-

ments for achieving the high Rm values required
for self-generation in an experiment. For turbulent
liquid metal flows, the power required to drive the
flows can be estimated by assuming that the input
power balances the loss of energy from the mean
flow

P =
∫

V ol

1
2ρU2d3x

τloss
. (3)

For a turbulent flow, the energy lost from an eddy
of scale length % and characteristic velocity Ueddy is
τloss ∼ %/Ueddy. This energy cascades to the vis-
cous dissipation scale where it ultimately shows up
as heating. Assuming that the scale length of the main vortex is the sphere radius, there is a
characteristic velocity associated with the large scale flow

Uturb =
(

6
4π

P

ρa2

) 1
3

, (4)

which is linearly related to the peak velocity used in the definition of Rm. For a liquid sodium
experiment of radius a=0.5 m with input power of 100 kW, Uturb = 5.8 m/s comparable to peak
speeds measured to be of the order 15 m/s. Note that turbulent flows have the somewhat un-
favorable scaling of Rm ∼ (Pa)

1
3 . To increase Rm by an order of magnitude (from Rm=10 to

Rm=1000) in a sodium experiment of similar size would require 100 MWs !!
Turbulence and the Magnetic Prandtl Number. While Rm is the essential parameter generating
magnetic field generation, the most important parameter governing the flow properties (beyond
the geometry and some device for injecting momentum) is the fluid Reynolds number Re ≡ aU

ν ,
where ν is the kinematic viscosity. Large Reynolds numbers (Re > 1000) is usually associated
with strong turbulence in the velocity field, while low values of Re imply laminar flows with strong
viscous dissipation. The ratio of the magnetic Reynolds number to the fluid Reynolds number is a

3
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Dynamos
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‘‘ . . . possible for the internal cyclic motion to 
act after the manner of the cycle of a self-
exciting dynamo, and maintain a permanent 
magnetic field from insignificant beginnings, at 
the expense of some of the energy of the 
internal circulation.’’

-J. Larmor

How could a rotating body such as the Sun become a 
magnet? [Br. Assoc. Adv. Sci. 159 (1919)].
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What is a self-exciting dynamo?

feedback

!J = σ
(

!E + !V × !B
)

Induction Equation

Equation of Motion

Faraday’s Law of Induction

µ0σLV
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The self-excited generator 
of Werner von Siemens (1866)

The “dynamo electric principle”
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MHD equations describe well the magnetic field 
evolution in a liquid metal or plasma

Ohm’s law and
Pre-Maxwell’s 

Equations 

∇× V ×B
1

µoσ∇
2B

∼ µoσLV0 ≡ Rm

Induction Equation

Equation of Motion
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Fluid flow can amplify and distort magnetic fields 
when the magnetic Reynolds number is large

 transverse component of field is generated, 
amplifying the initial field

 finite resistance leads to diffusion of field lines
0
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Standard Model of an MHD dynamo  
Step 1:  dipole field can be converted into strong toroidal field

The “Ω  effect” 
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Cowling’s Anti-Dynamo Theorem

When the magnetic field and the fluid 
motions are symmetric about an 
axis...no stationary dynamo can exist.

 T.G. Cowling, The magnetic fields of sunspots, 
Monthly Notices Roy. Astron. Soc.  94 39 (1933).
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Standard Model of an MHD dynamo  
Step 2: Nonaxisymmetric, helical flows convert 

toroidal field back into dipole

The “α  effect” 
 E.N. Parker, Hydromagnetic dynamo models, 

Astrophys. J. 122 293 (1955)

〈J〉 = σ
(
〈E〉 + 〈V 〉 × 〈B〉 +

〈
ṽ × b̃

〉)
B = 〈B〉 + b̃, V = 〈V 〉 + ṽ

Mean Field Electrodynamics

E =
〈
ṽ × b̃

〉
= α 〈B〉+ β∇× 〈B〉
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Why do Experiments?

. . . in magnetohydrodynamics one 
should not believe the product of a long 
and complicated piece of mathematics 
if it is unsupported by observation.

     Enrico Fermi
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 Why not Direct Numerical Simulations?

• viscous dissipation scale :

• magnetic dissipation scale :

• dynamical dynamo :

• scale range :

=> " (10,000,000)3 DNS,
that will run for 100 magnetic diffusion times, i.e. 10,000 
large eddy turnover times.

+ boundary conditions
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 lab experiments
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This simplest possible self-exciting flow:
a two vortex flow with Rmcrit~50

-0.5 0.00 0.5

Magnitude of V

Vpol

Vφ

 Dudley and James, Time-dependent kinematic dynamos with 
stationary flows, Proc. Roy. Soc. Lond. A.  425 407 (1989).
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Dynamo is of the stretch-twist-fold type:  field 
line stretching and reinforcement leads to dynamo
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 Laboratory Constraints
• Power requirement 

• In terms of control parameter

• Consequences:
" No convective dynamo in the lab
" RM=1 is a large number
" Fluid = liquid sodium
" Large power input ( x 100 kW) and cooling 
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 Dynamo and MRI Process
1. Begin with small magnetic field (C<<1)
2. Stir until Rm > Rmcrit

3.Magnetic field spontaneously created

Challenge:  to create a large, highly conducting, 
unmagnetized, fast flowing laboratory plasma for 
study  

-difficult to stir a plasma
-need some confinement for plasma to be hot
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The Madison Dynamo 
Experiment
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Riga experiment successfully self-generated a 
dynamo in 2001 (single helical vortex)
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 A. Gailitis, et al.,Magnetic Field Saturation in the Riga 
Dynamo Experiment, Phys. Rev. Lett. 86 3024 (2001)
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The Karlsruhe Dynamo: small-scale helical flows 
generate large-scale magnetic field

 Muller and Stieglitz, Experimental demonstration of 
a homogeneous dynamo, Phys. Fluids 13 561 (2001).
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 Direct Numerical Simulations 
of MHD equations with 
mechanical forcing

 Re=2200; turbulence for 
Re>450

Small Prandtl number of sodium 
(Rm<<Re) implies turbulence
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Turbulence, in the two-vortex dynamo, 
increases Rmcrit by factor of 5 (DNS)
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Excited eigenmode has structure similar to that 
predicted for the mean-flow, self-generated dynamo

Predicted Observed

Nornberg, Spence, Jacobson, Kendrick, and Forest, Intermittent magnetic field excitation 
by a turbulent flow of liquid sodium, Phys. Rev. Lett. 97 044503 (2006).
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Intermittent equatorial dipole is observed on 
surface of sphere

Equator
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France:  The VKS-II Experiment in Cadarache 
France recently self-excited using iron impellers

Berhanu et al.

Fig. 1: The VKS2 set-up is designed to generate a dynamo
flow in an electrically conducting fluid. The overall vessel is
a copper cylinder of radius 289 mm and length 604 mm. The
flow itself is confined within an inner copper cylinder (radius
R = 206 mm, length 524 mm, thickness 5 mm), with sodium at
rest between the inner and outer cylinders. An annulus of inner
radius 175 mm (thickness 5 mm) is fixed along the inner cylin-
der in the mid-plane between the disks. The counter-rotating
iron impellers have radius 154.5 mm and are set 371 mm apart
in the inner vessel; they are fitted with 8 curved blades of height
h = 41.2 mm. Their rotation frequencies are independently ad-
justable, up to 26 Hz. Magnetic measurements are made using
a temperature controlled, 3D Hall probe mounted flush on the
flow boundary, at the inner cylinder.

flow, which generates a high shear in the mid-plane. The
flow maximum driving power is 300 kW, and cooling
is performed using an oil flow inside the copper walls
of the vessel. It allows experimental runs at constant
temperatures between 110◦C and 160◦C. The integral
Reynolds numbers are defined as Rei = 2πKR2Fi/ν and
take values up to 5 106 where ν is the fluid viscosity and
K = 0.6 is a coefficient that measures the efficiency of the
driving impellers [12]. Corresponding magnetic Reynolds
numbers, Rmi = 2πKµ0σR2Fi, up to 49 at 120◦C are
reached – µ0 is the magnetic permeability of vacuum.
The magnetic field is measured with local Hall probes
inserted inside the fluid.

When the impellers are operated at equal and opposite
rotation rates F , a fully turbulent dynamo is observed
when F is larger than about 17 Hz (Rm = 31) [9]. The
self-sustained magnetic field is statistically stationary with
either polarity in this case. In the experiment, the rota-
tion rates (F1, F2) of the driving impellers can be inde-
pendently adjusted and this gives an additional degree of
freedom. Starting from a symmetric flow forcing, F1 = F2,
one can progressively change the rotation frequency of one
disk and explore regimes in which the faster disk imposes
some kind of global rotation to the flow, a feature common
to most natural dynamos.

We show in Figure 2 a preliminary inspection of the
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Fig. 2: (a) Preliminary inspection of dynamo regimes ob-
served as the impeller rotation frequencies are independently
set. Symbols: (o): statistically stationary dynamos, (+) no
dynamo, i.e., magnetic field less than 10 gauss at the mea-
surement location – and for measurement times longer than
180 s. (!): dynamo with reversals. (b) Examples of the time
variations of the main magnetic field component for rotation
frequencies of the disks, 22 − 22 Hz (Rm1 = Rm2 = 42.5) and
14 − 22 Hz (Rm1 = 27.5, Rm2 = 43.5). Note that on measure-
ment time scales of the order of 180 s, the regimes can depend
on the path followed to reach them.

parameter space accessible when the flow is driven with
disks rotating at different speeds. As said above, only sta-
tistically stationary dynamos are observed in the counter-
rotating case (Figure 2b). Another statistically stationary
dynamo mode is observed when the frequency of one im-
peller is increased from zero (say F1), the other being kept
fixed at 22 Hz, thus Rm2 in the range 42−43 depending on
the sodium temperature (Figure 2c). Note however that
its relative fluctuations are much smaller (compare Fig-
ures 2b, c), an effect possibly ascribed to global rotation.
This regime undergoes secondary bifurcations when the
slower impeller frequency is increased further. In a small
parameter range, ∆Fi/Fi ≈ 20%, a variety of dynamical
regimes, oscillations, intermittent bursts (not shown), as
well as dynamos with random reversals (Figure 3) are ob-
served. We also find pockets of parameters for which we
could not record the growth of a dynamo during 3-minute

p-2

2

the case of counter-rotating disks studied here, the pres-
ence of a strong axial shear of azimuthal velocity in the
mid-plane between the impellers generates a high level
of turbulent fluctuations [12, 13]. The kinetic Reynolds
number is Re = KR2Ω/ν, where ν is the kinematic vis-
cosity and K = 0.6 is a coefficient that measures the
efficiency of the impellers [14]. Re can be increased up
to 5 106: the corresponding magnetic Reynolds number
is, Rm = Kµ0σR2Ω ≈ 49 (at 120 oC), where µ0 is the
magnetic permeability of vacuum and σ is the electrical
conductivity of sodium.

A first modification with respect to earlier VKS ex-
periments consists of surrounding the flow by sodium at
rest in another concentric cylindrical vessel, 578 mm in
inner diameter. This has been shown to decrease the
dynamo threshold in kinematic computations based on
the mean flow velocity [14]. The total volume of liquid
sodium is 150 l. A second geometrical modification con-
sists of attaching an annulus of inner diameter 175 mm
and thickness 5 mm along the inner cylinder in the mid-
plane between the disks. Water experiments have shown
that its effect on the mean flow is to make the shear layer
sharper around the mid-plane. In addition, it reduces
low frequency turbulent fluctuations, thus the large scale
flow time-averages faster toward the mean flow. However,
rms velocity fluctuations are almost unchanged (of order
40− 50%), thus the flow remains strongly turbulent [15].
It is expected that reducing the transverse motion of the
shear layer decreases the dynamo threshold for the follow-
ing reasons: (i) magnetic induction due to an externally
applied field on a gallium flow strongly varies because of
the large scale flow excursions away from the time aver-
aged flow [16], (ii) the addition of large scale noise to the
Taylor-Green mean flow increases its dynamo threshold
[7], (iii) fluctuating motion of eddies increase the dynamo
threshold of the Roberts flow [17].

The above configuration does not generate a magnetic
field up to the maximum possible rotation frequency of
the disks (Ω/2π = 26 Hz). We thus made a last modifica-
tion and replaced disks made of stainless steel by similar
iron disks. Using boundary conditions with a high per-
meability in order to change the dynamo threshold has
been already proposed [18]. It has been also shown that
in the case of a Ponomarenko or G. O. Roberts flows,
the addition of an external wall of high permeability can
decrease the dynamo threshold [19]. Finally, recent kine-
matic simulations of the VKS mean flow have shown that
different ways of taking into account the sodium behind
the disks lead to an increase of the dynamo threshold
ranging from 12 % to 150 % [20]. We thought that using
iron disks could screen magnetic effects in the bulk of
the flow from the region behind the disks, although the
actual behavior may be more complex. This last modi-
fication generates a dynamo above Rm # 30. The three
components of the field $B are measured with a 3D Hall
probe, located either in the mid-plane or 109 mm away

from it (P1 or P2 in Fig. 1). In both cases, the probe
is nearly flush with the inner shell, thus $B is measured
at the boundary of the turbulent flow. Fig. 2 shows
the time recording of the three components of $B when
Rm is increased from 19 to 40. The largest component,
By, is tangent to the cylinder at the measurement loca-
tion. It increases from a mean value comparable to the
Earth magnetic field to roughly 40 G. The mean values
of the other components Bx and Bz also increase (not
visible on the figure because of fluctuations). Both signs
of the components have been observed in different runs,
depending on the sign of the residual magnetization of
the disks. All components display strong fluctuations as
could be expected in flows with Reynolds numbers larger
than 106.
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FIG. 2: Time recording at P1 of the components of the mag-
netic field when the rotation frequency Ω/2π is increased as
displayed by the ramp below (Rm increases from 19 to 40).

Fig. 3a shows the mean values of the components 〈Bi〉
of the magnetic field and Fig. 3b their fluctuations Bi rms

versus Rm. The fluctuations are all in the same range (3
G to 8 G, at 30 % above threshold) although the corre-
sponding mean values are very different. The time aver-
age of the square of the total magnetic field, 〈 $B2〉, is dis-
played in the inset of Fig. 3a. No hysteresis is observed.
Linear fits of 〈By〉 or Bi rms displayed in Fig. 3 define a
critical magnetic Reynolds number Rc

m ∼ 31 whereas the
linear fit of 〈 $B2〉 gives a larger value R0

m ∼ 35. The latter
is the one that should be considered in the case of a su-
percritical pitchfork bifurcation. The rounding observed
close to threshold could then be ascribed to the imper-
fection due to the ambient magnetic field (Earth field,
residual magnetization of the disks and other magnetic
perturbations of the set-up). The actual behavior may
be more complex because this bifurcation takes place on
a strongly turbulent flow, a situation for which no rig-
orous theory exists. The inset of Fig. 3b shows that
the variance B2

rms = 〈( $B − 〈 $B〉)2〉 is not proportional
to 〈B2〉. Below the dynamo threshold, the effect of in-
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FIG. 4: The dimensionless quantity, 〈B2〉µ0(σR)2/ρ is dis-
played as a function of Rm for different working temperatures
and frequencies (measurements done at P2 and identical sym-
bols as in the inset of Fig. 3b). The inset shows the same data
in dimensional form B2 versus rotation frequency for different
temperatures.

the boundary condition for the magnetic field generated
in the bulk of the flow. This changes the dynamo thresh-
old and the near critical behavior for amplitudes below
the coercitive field of pure iron. It should be also empha-
sized that the axisymmetry of the set-up cannot lead to
Herzenberg-type dynamos [25]. In addition, these rotor
dynamos display a sharp increase of the field at thresh-
old and their saturation is mostly limited by the available
motor power [25]. On the contrary, we observe a contin-
uous bifurcation with a saturated magnetic field in good
agreement with a scaling law derived for a fluid dynamo.

The different mechanisms at work, effect of magnetic
boundary conditions, effect of mean flow with respect to
turbulent fluctuations, etc, will obviously motivate fur-
ther studies of the VKS dynamo. A preliminary scan
of the parameter space has shown that when the disks
are rotated at different frequencies, other dynamical dy-
namo regimes are observed including random inversions
of the field polarity. Their detailed description together
with experiments on the relative effect of the mean flow
and the turbulent fluctuations on these dynamics are cur-
rently in progress.
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des Océans, CNRS UMR 5519, BP70, 29280 Plouzane,
France

‡ Present address : Laboratory for Aero and Hydrodynam-
ics, TU-Delft, The Netherlands

[1] H. K. Moffatt, Magnetic field generation in electrically
conducting fluids, Cambridge University Press (Cam-
bridge, 1978).

[2] G. O. Roberts, Phil. Trans. Roy. Soc. London A 271, 411-
454 (1972); Yu. B. Ponomarenko, J. Appl. Mech. Tech.
Phys. 14, 775-778 (1973).

[3] R. Stieglitz and U. Müller, Phys. Fluids 13, 561 (2001);
A. Gailitis et al., Phys. Rev. Lett. 86, 3024 (2001).

[4] F. H. Busse, U. Müller, R. Stieglitz and A. Tilgner, Mag-
netohydrodynamics 32, 235-248 (1996); K.-H. Rädler, E.
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[23] S. Aumâıtre, F. Pétrélis and K. Mallick, Phys. Rev. Lett.

95, 064101 (2005).
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Experiment: apply axisymmetric poloidal seed field 
to sphere and measure induced magnetic fields 
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Large scale (mean) and small scale (turbulent) magnetic 
fields are generated by liquid sodium flows
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The time-averaged, axisymmetric part of the magnetic 
field shows poloidal flux expulsion and a strong Ω effect

Magnetic Flux Ψ   
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〈...〉 ≡ 1
2πT

∫ T ∫ 2π
0 ... dφdt
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Question: Does a simple Ohm’s law make sense?

〈J〉 = σ
(
〈E〉 + 〈V 〉 × 〈B〉 +

〈
ṽ × b̃

〉)

Measured in Sodium 
Experiment

Measured by LDV Fluctuation Driven
Currents

〈...〉 ≡ 1
2πT

∫ T ∫ 2π
0 ... dφdt
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Bpol
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Field can be separated into mean-flow, mean-field 
driven currents and fluctuation generated currents

B due to 〈V 〉 × 〈B〉
B due to

〈
ṽ × b̃

〉

Spence, Nornberg, Jacobson, Parada, Kendrick, and Forest, Turbulent 
Diamagnetism in Flowing Liquid Sodium, Phys. Rev. Lett.  98 164503 (2007).
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Future Directions
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Liquid Metal Experiments are limited:  the next frontier for 
experimental dynamo studies should be plasma based

 Liquid metals have advantage that confinement is free 
and conductivity is independent of confinement, BUT:
➡ Unfortunate Power Scaling Limitation:  Pmech ~ Rm3 / L
➡ Prandtl Number is always very small:    Rm  << Re

 Plasmas have the potential for 
• Variable Pm
• Rm >> 100
• intrinsically include “plasma effects” important for 

astrophysics (compressibility, collisionality)
• broader class of available diagnostics
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Plasma Dynamo Facility is under development

LaB   Cathode6
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axisymmetric rings of 
permenent magnets
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1.5 m

>200 kW

Figure 1: The flux contours for the proposed
dynamo experiment using the ring cusp geom-
etry. The magnetic field is generated by ax-
isymmetric rows of 1.2 Tesla dipole magnets
with alternating polarity. The plasma is gen-
erated by injection of 1 kA of 75 volt primary
electrons, which subsequently ionize and heat
a background plasma.

In what follows, we propose to confine the
plasma using a very localized magnetic field that
is important only at the boundary of the plasma.
The confining magnetic field is localized at the pe-
riphery of the experiment and a large, unmagnetize
plasma can be created in the core of the experiment.
In addition, the magnetic geometry also allows for
control of the velocity at the the boundary of the
plasma.

The geometry we are proposing is a variant on
the multidipole confinement geometry first investi-
gated by MacKenzie, Leung, Herskowtitz and oth-
ers [24, 21, 20, 9]. The ion sources used in neu-
tral beam heating systems are an example of such
devices[15]. The plasma parameters are very suit-
able for the proposed experiment, but the proposed
device will need to be larger than previous exper-
iments and it must be made to flow to achieve
the needed values of Rm. These devices use rows
of alternating polarity permanent magnets on the
boundary of the plasma. In cylindrical geometry,
these often run lengthwise. The purpose of the
magnets is to reduce the loss area from the sur-
face area of the vessel to an area which is of the
order of the ion-gyroradius × the overall length of the magnets[? ]. Several techniques have been
used to generate plasmas in these devices including hot cathodes and rf heating. The most robust
is to insert a negatively biased, electron emitting filament (such as a resistively heated tungsten
or lanthanum hexaboride filaments) into a low pressure gas. Primary electrons are thermionically
emitted from the filaments and are well confined by the cusp field, and have sufficient energy to
ionize the background gas. These sources are inherently steady-state (requiring only DC power
supplies and vessel cooling). Such a geometry is exemplified in the Berkeley ion source (used on
TFTR neutral beams) that produces a hydrogen plasma with a density of n=5 × 1018 m−3 and an
electron temperature Te= 6 eV in a small volume (10s of liters) lined with 0.4 Tesla magnets and
approximately 40 kw of injected power.

We propose to construct a large, high field, high power variant on the plasma sources described
above in an axisymmetric, ring-cusp geometry as shown in in Fig. 1. For dynamo studies it is
desirable to simultaneously increase the plasma size and electron temperature in order to maximize
Rm. The proposed experiment is a 3 m diameter sphere is 3 m with 26 rings of 1.3 Tesla, NeFeB
(N48 grade) 1” cube magnets in an axisymmetric geometry. New technology has made these
strong magnets available and this experiment would represent an unprecedented advance for cusp
confinement with more than a factor of two increase in field strength. Electron temperature has
been shown to scale with the magnetic field strength[16] and these magnets will be almost twice
as strong as in previous experiments, consistent with the lower loss rates due the narrowing of the

5

 Axisymmetric Ring Cusp
 edge confinement 

provided by 1.5 T, NdFeB 
Magnets

 high power plasma 
source using LaB6

 Challenges

 cooling of magnets
 insulators
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Multipole Magnetic Field can be used 
to drive flow at edgeplasma will require 0.5 MW.

            S                 N
                S                   N

                S                 N

+-

B
E

V

Figure 3: Electrode drive for flow. Alternat-
ing positive and negative electrostatic bias is
applied to electrodes between cusp rings. The
resulting !E× !B velocity is purely toroidal and
controllable.

Plasma Rotation Control. The multidipole geom-
etry allows a simple and robust electrode scheme
to drive the velocity field in this geometry. The
geometry is shown in Fig. 3. The concept is to
use toroidally symmetric electrodes between each
of the cusp rings, and to apply alternating pos-
itive and negative potentials to these electrodes.
The resulting electric field alternates in polarity,
which, together with the alternating direction of
the magnetic field gives a uniform !E × !B veloc-
ity in the toroidal direction. The electrode scheme
mimics the boundary conditions that a rotating ves-
sel would provide in fluid mechanics experiments
(where no slip conditions can be assumed).

Since the UE×B velocity can be estimated on
the surface of the magnets from the magnitude of
the potential drop, the distance between the flux
surfaces, and the strength of the magnetic field on
the surface of the magnets, it can be projected in to
field lines deeper in the sphere. We plan to insert
the cathodes into magnetic field lines which are separated by 1 cm on the surface of the magnetics.
A potential difference of 100 volts between positive and negative sides of the magnets gives a 10
km/s velocity which should exist in the magnetized region of the plasma. We assume that there will
be a viscous coupling of the magnetized region with the unmagnetized region. The peak velocity
UE×B = 20 km/s is assumed to come from a 200 volt difference between the electrodes.

The experimental flexibility of the rotation control proposed here is remarkable in that the
experimenter can precisely control the boundary condition Ω(r = a, θ) by adjusting the voltages
between each of the electrodes. So, for example, conditions like the free-slip surface of the sun can
be investigated for the first time; at the equator the surface of the sun completes a rotation once
every 25.4 days while near the poles it’s as much as 36 days. Rigid rotation should be easy to
accomplish by adjustment of the electrode voltages at each latitude to impose a uniform rotation
rate on the surface. Assuming that the magnets are uniformly separated poloidally and that they
have identical strengths, an electrode voltage ∆U(θ) ∼ sin θ will give uniform rotation.

One might ask whether more complex flow geometries are possible with such a simple flow drive
or if the axisymmetric geometry precludes more complicated flow. The flexibility of controlling the
rotation profile gives a knob, however, which can be used to drive poloidal flows. For example, ro-
tating regions near the poles in opposite directions, with relatively little rotation near the equatorial
region is exactly the type of geometry using in the Von Karman flows regularly investigated in fluid
mechanics experiments. In those experiments disks at each end of a cylindrical vessel are rotated
in opposite directions making each hemisphere rotate in opposite directions and strong centrifugal
pumping that gives poloidal flows with inflow at the equator and outflow along the poles. This is
exactly the topology used in the liquid sodium version of the Madison Dynamo Experiment and is

7

Arbitrary  Vφ (r = a, θ)
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Formulary of Key Dimensionless Parameters

smaller), while in other cases, like the Sun, much of the magnetic field energy can be considered as
turbulent.

Magnetic Reynolds Number Rm µ0σUL 1.5
T

3/2
e,eVUkm/sLm

Z

Reynolds Number Re UL
ν 8 amUkm/sµ2n18

T
5/2
i,eV

Magnetic Prandtl Number Pm µ0σν 0.18
T

3/2
e,eVT

5/2
i,eV

µ2n18

Cowling Number C
B2

2µ0
1
2ρU2 4.75 B2

G
µn18U2

km/s

Lundquist Number Lu Rm× C1/2 3.26
T

3/2
e,eVBGLm

Z
√

µn18

Magnetization ρe
L 0.0238

T
1/2
e,eV

BGLm

Ion Collisionality λmfp

L 0.012
T 2
i,eV

n18Lm

Plasma Pressure β 2µ0nT
B2 40 n18Te,eV

B2
G

Table 1: Formulary.

Plasma Process Rmcrit Re C λ
L β

large scale dynamo ! 100 < 100 " 1 - -
large scale dynamo ! 500 > 1000 " 1 - -
with turbulence
MHD turbulence ! Re ! 1000 ∼ 1 - -
small scale dynamo ! 500 ! 1000 " 1 ? ?
MRI (with mean field) ! 10 — " 1 ? ?
MRI (without mean field) ! 15000 — " 1 ? ?
Plasma Instabilities ! Re ! 1000 " 1 ! 1 $ 1

Table 2: Dimensionless parameters required for addressing each
plasma process.

The process by which this
happens varies from one sit-
uation to another, but one
common essential feature
which is necessary for dy-
namos is that the magnetic

Reynolds number, Rm, be
large: Rm ≡ µ0σLU is a di-
mensionless parameter con-
structed from the conductiv-
ity σ, the size of the object
L, and the characteristic ve-
locity U and quantifies the
ratio of generation of magnetic field by sheared flows and the dissipation by electrical resistivity.
Table 2 gives an estimate of the minimum value of Rm needed for studying the processes listed
above. It is very important to recognize that these processes can be investigated without matching
their corresponding astrophysical values.

Recently, several experiments investigating self-generation of magnetic fields have been carried
out using flows of liquid metals (either sodium or gallium) as a conducting medium to achieve the
high Rm values needed to investigate magnetic field generation. Liquid metals are conducting,
satisfy the MHD equations, and require no magnetic field to provide initial confinement and hence
C " 1. For very idealized, laminar velocity fields the critical value of Rm for self-generation of
magnetic fields is predicted by theory to be around 100. The conductivity of sodium (which melts
at 100 C) is a decreasing function of temperature (like all metals) and numerically equal to 107

mho-m, so that Rm ≈ 12amUm/s: experiments which investigate self-excitation require a ∼ 1 m,
and V ∼ 10 m/s so to achieve marginally large enough Rms to be in an interesting MHD regime.
To achieve these parameters using liquid sodium in an experiment of radius L=0.5 m requires a
mechanical input power of Pmech ∼ 100 kW. Unfortunately, turbulent flows have the somewhat

3
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Plasma Couette Flow Experiment is a prototype for 
dynamo experiment and will be used to study MRI
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MRI dispersion in Plasma Couette Flow
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Plasma Parameters
plasma radius a 1.5 m
density n 1017—1019 m−3

electron temperature Te 2—20 eV
ion temperature Ti 0.5—2 eV
peak flow speed Umax 0—20 km/s
ion species H, He, Ne, Ar 1, 4, 20, 40 amu
magnetic field r < 1.2 m <0.1 gauss
magnetic field at cusp >104 gauss
current diffusion time µ0σa2 50 msec
pulse length τpulse 5 sec
heating power P < 0.5 MW

Rmmax > 1000
Re 24—3.8×106

Pm 3×10−4—56
C 10−4

β 104

Table 3: Plasma parameters of proposed experiment.

Experimental Campaigns. The
plasma dynamo facility offers great
experimental flexibility that can be
used to set up experiments to ad-
dress each of the plasma processes
described above. To begin with, we
plan to use LaB6 cathodes in the
plasma interior for plasma genera-
tion and heating; to further increase
the electron temperature we will be
proposing to use a microwave heat-
ing scenario similar to that used in
helicon sources and/or low energy
neutral beam heating, both of which
appear feasible. Characterization of
the plasma will initially rely upon
probes, optical diagnostics, and mi-
crowave diagnostics. As with any
new experiment, there will be a sig-
nificant amount of experimentation
required to understand plasma generation, develop heating scenarios, develop diagnostics, etc., and
it is understood that the experiments on field generation will depend upon the detailed plasma
behavior.

In what follows, a set of campaigns are proposed that will address the primary plasma processes
laid out above. In the spirit of a whitepaper, we have left out the detailed calculations (primarily
direct numerical simulations) that establish the feasibility of each campaign.
Large scale dynamos. Several different routes are believed to be capable of self-generating a
large scale dynamo in this experiment. The first approach uses a laminar, two vortex flow similar
generated by oppositely directed rotation in each hemisphere. This flow is similar to the the
laminar, two vortex flow first described in Dudley and James [6] has been shown to self-excite
above Rmcrit > 350. Varying the Prandtl number (primarily by varying the ion mass) should
allow this geometry to be investigated both with (high Re) and without turbulence (low Re).
Second, initial calculations indicate that a convection driven (α−Ω) dynamo experiment is feasible.
Differential rotation (controlled by poloidal variations in overall rotation) can efficienty generate a
strong toroidal field from a relatively weaker poloidal field through the Ω effect. Helical turbulence
can be generated by injecting light ions into a strongly rotating, heavy ion flow (the light ions
are buoyant and will migrate to the center of the device; the helical turbulence is expected to
regenerate the poloidal field from the toroidal field and thereby close the feedback loop required for
self-excitation. The proposed geometry can easily be considered as testing the key plasma processes
responsible for the Sun’s dynamo.
Small scale dynamos, Turbulence, and Plasma Instabilities are a set of related topics
that are expected in turbulent, high Rm flows. Small scale dynamos are expected when Re is
sufficiently high (Re ≥ 1000) that the flow is turbulent and when Rm $ Re [17]. In this case,
turbulent magnetic fluctuations can spontaneously develop on scale lengths which are smaller than
the viscous dissipation scale. This unique parameter regime would require the development of
additional electron heating to bring the electron temperature into the range of 20-50 eV and thereby
elevate Rm into the range of 2000 to 5000. Turbulence can be studied with or without a dynamo
being present by applying a weak external seed field that can be amplified by the fluctuations in

6
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Two Vortex Plasma Dynamo Flow can be driven at 
boundary (spherical Von Karman Flow)

2

merous physical phenomena.
In this paper we present simulations of such an exper-

iment, using a 3D nonlinear MHD simulation code de-
veloped to simulate the Madison Dynamo Experiment12.
The relevant parameters which describe these simula-
tions are the magnetic Reynolds number, Rm = µ0σv0a,
where σ is the conductivity of the fluid, v0 a charac-
teristic speed, and a the radius of the sphere, and Pm,
the magnetic Prandtl number, which describes the ra-
tio of viscous to magnetic diffusion. No-slip boundary
conditions are used, and an electrically-insulating outer
boundary is assumed. By varying the outer toroidal
velocity field boundary condition different flow regimes
have been studied. In Section II we present boundary
conditions which result in flows which display dynamo
action. In Section III we describe how Keplerian flow pro-
files have also been simulated. These simulations are un-
stable to the Magnetorotational Instability (MRI) when
exposed to an axial applied magnetic field.

II. DYNAMO SIMULATIONS

Liquid metal experiments have recently succeeded in
magnetically self-exciting. The first two of these cases2,3

used pipes and baffles to carefully prescribe the flow. The
systems were not simply connected and the role of tur-
bulence in the experiments was unclear. The latest ex-
periment to dynamo is based on the Von Kármán flow13.
It is simply connected, impeller driven, and is very tur-
bulent. No experiments based on the Couette flow have
magnetically self-excited.

That a flow generated by a differentially rotating outer
boundary might magnetically self-excite is a bit of a sur-
prise. It is difficult to generate the poloidal flow needed
to sustain dynamo action14. This difficulty manifests it-
self in the very large critical magnetic Reynolds numbers,
Rmcrit, required for these flows to self-excite.

A. Von Kármán Flows

The first category of flows which magnetically self-
excite is based on the Von Kármán flow. In this case
the outer boundary rotates in opposite directions near
the poles of the sphere and rotates relatively little near
the equator. The boundary condition is presented in
Figure 1, and is constructed by having non-zero bound-
ary conditions for the even-numbered spherical harmonic
components, " = 2, 4, 6, 8. The steady state velocity
field which results from this boundary condition, for
Rm = 400 and Pm = 1, is given in Figure 2. The ve-
locity field is counter-rotating in the toroidal direction,
with a poloidal flow which rolls inward at the equator
and outward at the poles. The flow is axisymmetric.

The magnetic energy of this simulation, as a func-
tion of time, is given in Figure 3. The critical magnetic
Reynolds number for this flow, based on linear analysis, is
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FIG. 1: Toroidal boundary condition which generates a Von
Kármán-type flow.
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t = 2.62"#

FIG. 2: Steady-state velocity field generated by the toroidal
boundary condition given in Figure 1, before the growing
magnetic field becomes important. In the left hemisphere are
the contours of toroidal speed, and in the right hemisphere
are the contours of the poloidal stream function. Note that,
as indicated in Figure 1, the peak speed is 1, but the scale
range has been reduced for clarity.

Rmcrit = 375, which explains the very slow growth rate of
the magnetic field. As is required for axisymmetric veloc-
ity fields, the excited magnetic field is non-axisymmetric,
dominated by m = 1 modes.

B. Equatorially Symmetric Boundaries

Equatorially-symmetric boundary conditions also ex-
ist which generate velocity fields which magnetically self-
excite. A boundary condition built using odd-numbered
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the poles of the sphere and rotates relatively little near
the equator. The boundary condition is presented in
Figure 1, and is constructed by having non-zero bound-
ary conditions for the even-numbered spherical harmonic
components, " = 2, 4, 6, 8. The steady state velocity
field which results from this boundary condition, for
Rm = 400 and Pm = 1, is given in Figure 2. The ve-
locity field is counter-rotating in the toroidal direction,
with a poloidal flow which rolls inward at the equator
and outward at the poles. The flow is axisymmetric.

The magnetic energy of this simulation, as a func-
tion of time, is given in Figure 3. The critical magnetic
Reynolds number for this flow, based on linear analysis, is
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FIG. 1: Toroidal boundary condition which generates a Von
Kármán-type flow.
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FIG. 2: Steady-state velocity field generated by the toroidal
boundary condition given in Figure 1, before the growing
magnetic field becomes important. In the left hemisphere are
the contours of toroidal speed, and in the right hemisphere
are the contours of the poloidal stream function. Note that,
as indicated in Figure 1, the peak speed is 1, but the scale
range has been reduced for clarity.

Rmcrit = 375, which explains the very slow growth rate of
the magnetic field. As is required for axisymmetric veloc-
ity fields, the excited magnetic field is non-axisymmetric,
dominated by m = 1 modes.

B. Equatorially Symmetric Boundaries

Equatorially-symmetric boundary conditions also ex-
ist which generate velocity fields which magnetically self-
excite. A boundary condition built using odd-numbered

3

5 10 15
Time [!"]

10-12

10-10

10-8

10-6

10-4

10-2

E
n

e
rg

y
 [

a
rb

]

Velocity

Magnetic

FIG. 3: Energy versus time for the boundary condition given
in Figure 1. For this run Rm = 400.
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FIG. 4: Toroidal boundary condition based on odd-numbered
spherical harmonic components, ! = 1, 3, 5, 7.

spherical harmonic components, ! = 1, 3, 5, 7, is pre-
sented in Figure 4. In contrast to the boundary con-
dition presented in Figure 1, this boundary condition
has several large-amplitude sign changes. The result-
ing steady state velocity field is presented in Figure 5.
This boundary condition generates much more flow than
the previous example. Its poloidal flow is considerably
stronger, and toroidal velocity field fills whole sphere.
With such a stronger velocity field it comes as no sur-
prise that Rmcrit = 280 for this flow, much lower than
the previous example.

III. MRI SIMULATIONS

Dynamo physics is not the only physics accessible with
such an experiment. Because the velocity field, to some
extent, can be fine-tuned, many velocity fields which re-
quire dedicated experiments to be generated can be pro-
duced. For example, a boundary condition that follows
a Keplerian profile is plotted in Figure 6. This boundary
condition is Keplerian (vφ ∼ ρ−

3

2 , where ρ is the cylin-
drical radial coordinate) in the range 0.3 ≤ θ ≤ π − 0.3.
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FIG. 5: Steady state velocity field generated by the toroidal
boundary condition given in Figure 4, before the magnetic
field energy becomes large. The plotting convention is the
same as in Figure 2.
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FIG. 6: Toroidal boundary condition which follows a Keple-
rian flow profile. Odd-numbered spherical harmonic compo-
nents, ! = 1 − 17, are used to generate this profile.

However, the flow generated by the boundary, presented
in Figure 7 with Rm = 300 and Pm = 1, is not Kep-
lerian. To show this, Figure 7 presents the toroidal ve-
locity field at the equator, as a function of radius. It is
clear that vφ

(

π
2

)

∼ r−0.76 for much of the radial range.
Nonetheless, the flow satisfies the conditions required to
be unstable to the MRI in much of the volume of the
sphere15.

Part of the time evolution of the instability is presented
in Figure 9, wherein is plotted the energy in the domi-
nant toroidal velocity field modes of the simulation, as
a function of time, in resistive units. Initially no ex-
ternal field is applied, and the dominant velocity field

 Plasma Rm=300, Re=100
 Te=10 eV
 U=10 km/s,
 n=1018 m-3

 Hydrogen
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Small Scale Dynamo at Pm>1

 Rm=1000
 Re=400
 Plasma

 Te = 13 eV 
 Ti = 1 eV
 deuterium
 U = 15 km/s
 n = 1018 m-3
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New Plasma Dynamo Facility is under construction at 
UW to investigate flow driven instabilities in plasmas 

Funded by NSF
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Summary

 High Rm, weak magnetized flows define a unique 
parameter regime for experiments
 Free energy source:  flow energy

 Dynamos: Kinetic energy ➔ Magnetic energy
 liquid metal experiments demonstrate effect

 The next frontier may be plasma-based experiments 
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