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Outline

Introduction
¢ Free energy source: Plasma Kinetic (flow) Energy
¢ astrophysical examples
Dynamos: Kinetic energy => Magnetic energy
¢ basic models
" |Liquid metal experiments
¢ self-excitation observations
¢ mean-field EMF process
Future Directions: Plasma Experiments
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Novel Faramefer regime: continuous

transfer ot flow energy » magnetic energy
B?
Cowling C ;p“’ P C<l1

Magnetic Reynolds Rm pugoUL 100 < Rm
Reynolds Re UL | € Re

Magnetic Prandtl  Pm LoV Pm = Rm/Re

Quasistationary T > uol?

For plasma experiments: steady-state,
large, flowing, unmagnetized, hot
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The Earths Dynamo: large scale dipole

Glatzmaier and Roberts, A three-dimensional self-

consistent computer simulation of a geomagnetic
field reversal, Nature 377 203 (1995).

Rm~500-1000, Re=10%, Pm=10-°, T4=10° yrs
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+ smaller scale fluctuations
1630

Contour interval = 25000

Jackson, Jonkers and Walker, Four centuries of geomagnetic
secular variation, Phil. Trans. R. Soc. Lond. A 358 957 (2006).
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The Suns dynamo: oscillatory

and mostly small-scale
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Rm~103, Re=10", Pm=10-3, T4=10" yrs
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+ weak large scale field
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Galactic Magnetic Fields: weak large-scale

field + much stronger small-scale

M51 6cm Total Int. 4+ B-Vectors (VLA4Effelsberg)

\\\\

Copyright: MPIR Bonn (R.Beck, C.Horellou & N.Neaininger)

Rm~10'4, Re=10%, Pm=10°>, T¢=1023 yrs
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Disks and Jets around Black Holes




Galaxy Cluster Abell 2597

Rm~10%°, Re=10%°>, Pm=10*%




Poorly Understood, Fundamental Plasma and MHD

Processes Can Benefit from Experimental Studies

Large Scale Dynamo: What is the size, structure and dynamics of
the mean magnetic field created by high magnetic Reynolds number
flows —particularly rotating flows?

= Small Scale Dynamo: How do turbulent (high Rm) flows create
turbulent magnetic fields”? What is the nature of plasma turbulence
when magnetic fields and velocity fields are in near equipartition?

= Magnetorotational Instability: How is angular momentum transport
by magnetic instabilities? Can the MRI be a dynamo?

= Flow Driven Reconnection: How does plasma flow generate

magnetic energy that can accumulate and ultimately be released in
explosive instabilities?

= Plasma Instabilities: Do plasma instabilities beyond MHD play a role
In collisionless, turbulent plasma flows?
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Minimum requirements for experimentally

addressing each Plasma Process

_ 2
Plasma Process Re %TO 5] Hoo S
large scale dynamo
laminar < 100 - -
with turbulence > 1000
small scale dynamo > 1000 7 7
MHD turbulence 2> 1000 - -
MRI
with mean field —
without mean field —
B field stretching < 100 - -
Plasma Instabilities > 1000 >1 >1

Large, High Te, fast flowing
plasmas Low B, fast flowing
plasmas
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Dynamos
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How could a rotating body such as the Sun become a

magnet? [Br. Assoc. Adv. Sci. 159 (1919)].

(11

. . . possible for the internal cyclic motion to
act after the manner of the cycle of a self-
exciting dynamo, and maintain a permanent
magnetic field from insignificant beginnings, at
the expense of some of the energy of the
Internal circulation.”

-J. Larmor



What is a self-exciting dynamo?

Faraday's Law of Induction 5 |

—

JZO(E+VXE)

feedback

Lo oLV
~ Induction Ec:!ua’rion/Y
!

ol wL ] F§
ot B 2N R TL/R

Equation of Motion
6(4) Tea;t L 2

- I B

o I  2n1NRI
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The self-excited generator
of Werner von Siemens (1866)

The "dynamo electric principle”
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MHD equations describe well the magnetic field

evolution in a liquid metal or plasma

Induction Equation

Ohms law and

Pre-Maxwells ?TB V XV x B - (I)UVQB
Equations |

J=0(E+V xB)

V xB=puyd VTVQXBN/LOO'LVOERWL

B _ X7 SETD ILLOO-V b

ot

Equation of Motion
p(Gr +V:-VV)=-Vp+IxB+uV2V+ Fprop
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Fluid flow can amplify and distort magnetic fields

when the magnetic Reynolds number is large

Initial B field Final B field

B field induced
from velocity
shear

V field

= transverse component of field is generated,
amplifying the initial field

® finite resistance leads to diffusion of field lines

0
0B __ vV xV L _1 g2
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Standard Model of an MHD dynamo

Step 1: dipole field can be converted into strong foroidal field

The "Q effect”
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Cowlings Anti-Dynamo Theorem

When the magnetic field and the fluid
motions are Ssymmetric about an
axis...no stationary dynamo can exist.

T.G. Cowling, The magnetic fields of sunspots,
Monthly Notices Roy. Astron. Soc. 94 39 (1933).
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Standard Model of an MHD dynamo

Step 2: Nonaxisymmetric, helical flows convert
toroidal field back into dipole

Mean Field Electrodynamics

B=(B)+b, V=(V)+7%
(J) =0 ((B)+ (V) x (B) + (% x b))
5:<17><5>:04<B>—|—ﬁV><<B>

The "0t effect”

E.N. Parker, Hydromagnetic dynamo models,
Astrophys. J. 122 293 (1955)
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Why do Experiments?

...In magnetohydrodynamics one
should not believe the product of a long
and complicated piece of mathematics
if it is unsupported by observation.

Enrico Fermi
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Why not Direct Numerical Simulations?

3 1/4

® viscous dissipation scale : Uy = <_>
€

° . . . . . / L [ P_:A;/_l

magnetic dissipation scale : 'y = Ly I,
. 8

e dynamical dynamo : R,, ~ 100 (Re ~ 10°)

L o 5

e scale range : g = Re3/* ~ 10

=>  (10,000,000)° DNS,
that will run for 100 magnetic diffusion times, i.e. 10,000
large eddy turnover times. Ty = L2/n = Rm(L/U)

+ boundary conditions

Saturday, December 12, 2009



Saturday, December 12, 2009

10"

10"
Pr m

10"

100 1ot 10* 10° 10* o 10® 10’7 10° 10’




This simplest possible self-exciting flow:
a two vortex flow with Rmc+~50

Vpol

Magnitude of V

Dudley and James, Time-dependent kinematic dynamos with
stationary flows, Proc. Roy. Soc. Lond. A. 425 407 (1989).
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Dynamo is of the stretch-twist-fold type: field
line stretching and reinforcement leads to dynamo
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Laboratory Constraints

® Power requirement

0By (pL°)U?
ot L/U

_ pL2U3
Ry = poo LU

e In terms of control parameter

PT, 1/3
= ()

e Consequences:
No convective dynamo in the lab
Ru=l is a large number
Fluid = liquid sodium
Large power input ( x 100 kW) and cooling
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Dynamo and MRI Process

1. Begin with small magnetic field (C««l1)
2. Stir until Rm > Rmerit

3. Magnetic field spontaneously created

Challenge: to create a large, highly conducting,
unmagnetized, fast flowing laboratory plasma for
study

~difficult to stir a plasma
-need some confinement for plasma to be hot
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Riga experiment successfully self-generated a

dynamo in 2001 (single helical vortex)

Saturday, December 12, 2009
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A. Gailitis, et al.,Magnetic Field Saturation in the Riga
Dynamo Experiment, Phys. Rev. Lett. 86 3024 (2001)
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The Karlsruhe Dynamo: small-scale helical flows
generate large-scale magnetic field

Muller and Stieglitz, Experimental demonstration of
a homogeneous dynamo, Phys. Fluids 13 561 (2001).
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Small Prandtl number of sodium

(Rm<<Re) implies turbulence

TimeStep: 0

Direct Numerical Simu
of MHD equations witt
mechanical forcing

- Re=2200; turbulence -
Re>450

240
Magnitude of V 200.00]
L 160.00
Fy(p, z) = p?sin(mpb) 120.00!
F.(p,z) = —esin(mwpc) ' A -'- 80.006
0.250 < |2| < 0.55a, p < 0.3c . .: 40.008
0.0097:
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Turbulence, in the two-vortex dynamo,

increases Rmci+ by factor of 5 (DNS)

450

400

turbulent flow

350 -

0T dynamo

250

200
no dynamo

150

100

mean-flow

critical magnetic Reynolds number

50

] I ] ]
0 500 1000 1500 2000 2500
Reynolds number
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Excited eigenmode has structure similar to that

predicted for the mean-flow, self-generated dynamo

Predicted Observed

T s L e
I 2 1 o
| | 1

-35 -11  Feld[G] 11 35

Nornberg, Spence, Jacobson, Kendrick, and Forest, Intermittent magnetic field excitation
by a turbulent flow of liquid sodium, Phys. Rev. Lett. 97 044503 (2006).
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Intermittent equatorial dipole is observed on

surface of sphere

Magnetic Field Fluctuations

Equator
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France: The VKS-II Experiment in Cadarache

France recently self-excited using iron impellers
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Experiment: apply axisymmetric poloidal seed field
to sphere and measure induced magnetic fields

symmetry  [Bpol
axis
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Large scale (mean) and small scale (furbulent) magnetic
fields are generated by liquid sodium flows

Rm

Field [G]
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The time-averaged, axisymmetric part of the magnetic

field shows poloidal flux expulsion and a strong Q effect

S Magnetic Flux ¥
() =gz [y dedt

629 -314 00 314 629
Toroidal Field [G]
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Question: Does a simple Ohms law make sense?

Measured in Sodium
ExperlmemL

e e

Measured by LDV  Fluctuation Driver
Currents

eeeeeeeeeeeeeeeeeeeeeeee



Field can be separated into mean-flow, mean-field

driven currents and fluctuation generated currents
B due to <i7 X E>
B due to (V) x (B)

100 -50 00 50 10.0 100 -50 0.0 50 10.0
B/B,y, B/B,,

Spence, Nornberg, Jacobson, Parada, Kendrick, and Forest, Turbulent
Diamagnetism in Flowing Liquid Sodium, Phys. Rev. Lett. 98 164503 (2007).
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Future Directions




Liquid Metal Experiments are limited: the next frontier for

experimental dynamo studies should be plasma based

= Liquid metals have advantage that confinement is free
and conductivity is independent of confinement, BUT:

= Unfortunate Power Scaling Limitation: Pmech ~Rm3/ L
= Prandtl Number is always very small. Rm << Re

= Plasmas have the potential for

e Variable Pm
e Rm > 100

e intrinsically include “plasma effects” important for
astrophysics (compressibility, collisionality)

e broader class of available diagnostics
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Plasma Dynamo Facility is under development

= Axisymmeftric Ring Cusp

" edge confinement
provided by 1.5 T, NdFeB
Magnets

axisymmetric rings of

= high power plasma
permenent magnets

source using LaBe

= Challenges

< 1.5m
¢ cooling of magnets
¢ insulators
LaBg Cathode
— I
>200 kW

S N
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Multipole Magnetic Field can be used
to drive flow at edge
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Formulary of Key Dimensionless Parameters

Magnetic Reynolds Number
Reynolds Number

Magnetic Prandtl Number

Cowling Number
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Plasma Couette Flow Experiment is a prototype for
dynamo experiment and will be used to study MRI

/ Lé.gé PIas’ i: ource




MRI dispersion in Plasma Couette Flow
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Plasma Parameters

plasma radius a 1.5 m
density n 1017—10" m3
electron temperature T, 2—20 eV
ion temperature T 0.5—2 eV
peak flow speed Unnaz 0—20 km/s
ion species H, He, Ne, Ar 1, 4, 20, 40 amu
magnetic field r<1.2m <0.1 gauss
magnetic field at cusp >10* gauss
current diffusion time pgoa? 50 msec
pulse length Tpulse 5 sec
heating power P < 0.0 MW

BRmoax > 1000

Re 24—3.8x10°

Pm 3x10~*—56
C 10—4
3 10%
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Two Vortex Plasma Dynamo Flow can be driven at

boundary (spherical Von Karman Flow)

Toroidal Speed [arb]

o
o1

10 -Velocity
- Magnetic
10

10°|

Energy [arb]

10°+

10"0-—

10"2-
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-0.5 -0.2 0.0 0.2 0.5
V [arb]

= Plasma Rm=300, Re=100
¢ Te=10 eV
¢ U=10 km/s,
¢ n=10'¥ m3
.

Hydrogen



Small Scale Dynamo at Pm>l

" Rm=1000
= Re=400
® Plasma

¢ Te =13 eV
¢®¢Ti=1eV

¢ deuterium
¢ U=15km/s
¢ n=10"% m3

-1.0 -0.5 0.0

Poloidal profile of B, VK—=Re400-Rm1000, Time = 1,2971480
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New Plasma Dynamo Facility is under construction at
UW to investigate flow driven instabilities in plasmas

Funded by NSF
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Summary

" High Rm, weak magnetized flows define a unique
parameter regime for experiments
¢ Free energy source: flow energy

= Dynamos: Kinetic energy => Magnetic energy

¢ liquid metal experiments demonstrate effect
" The next frontier may be plasma-based experiments
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