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The Intermediate Regime
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Source of fast electrons?



Basic Questions in Short-Pulse Fast Ignition

•What are the fast electron characteristics: energy, momentum, density,

energy spread, angular spread, current etc.? In other words can we

come up with a simple formula for f(p)? This hasn’t even been done in

1D.

•In general the characteristics of the fast electrons is sensitive to how you

decide to define what is “fast”. Can we find a method that is relatively

insensitive? (i.e. a relatively objective definition)



Previous Studies

• Wilks 1992: “heated electron temperature 

versus intensity”. How? Where? When? 

Ponderomotive scaling.

• Kemp 2008 : Assumed Maxwellian and fitted a 

line to the dN/dE spectrum. Result was 

independent of where measured. 

I=1.37x1020Wcm-2. Also Pukhov, Patel.

• Lefebvre & Bonnaud 1997: take average 

energy >100keV. Time and space averaged. 

Much lower than ponderomotive.

Several people have looked at the issue of FE energy scal. most not. naravno Wilks who showed pondero. scal. ali nazalost za nas didn’t mention kako, gde i
kad the FE energy was calc’d.    Some people (kao Kemp i Phukhov) have attempt. to def. the FE temp. by assum. a Maxw. dist. and fitting a straight line to 
work back to the average energy. There always seems to be some level of uncertainty as to where to fit the straight line.  In contrast to that technq. Lefebvre 
& B looked at the time and space averaged av. energy. of electrons above 100keV. That produced a result much lower than pond.



The Model (FIDO)
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•Vlasov-Fokker-Planck Equation

•Maxwell’s Equations

•Cartesian grid in configuration space

•Spherical grid in momentum space (makes collision algorithms fast and simple, 

naturally allows for the effect of magnetic fields and p is natural coordinate to 

stretch if you want to study two populations)

•Piecewise-Parabolic Interpolation for advection

•Solve for collisions and fields implicitly

Results shown today

•number of points in p=110

•number of points in angle=32-96

•500 cells in x

Simplicity

•Normal incidence

•Steep density profile

•Immobile ions
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Ovde je typical simulation grid in mom. space with the dots representing cell centres.  Mozete videti da ima higher resolution at low p to resolve the cold 
electrons.



Criteria

• Where? Just behind absorption 

region.

• When? After the flux has 

reached “equilibrium”. Cycle-

averaged.

• How? Choose quantities 

related to those electrons 

which carry 90% of the heat 

flux.

• Calculate <E>, Epeak and 

Espread.
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Sleduci we set the criteria for measuring the dist. func. Ovde na pravo je plot telling us where the laser energy is being absorbed (the blue line) with the black 
line the density profile. We’re going to measure the FE dist. func. at the red line which is about a micron behind the absorption region. When? We give the 
system plenty of time to reach a cycle-averaged eqmb which corresponds to 60fs. How? Let’s only sample those FE’s which carry 90% of the heat flux



I=1x1019Wcm-2 Angle-Averaged f(E)

•dn has many “temperatures”
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Na levo je  angle-averaged dist. func. plotted in the usual way i.e. as dN/dE whose height gives the number of electrons in that energy bin. Kao mozete videti
fitting straight lines to this dist. and attempting to infer a temperature is somewhat arbitrary. If instead we plot the “energy” func. defined in this way then we 
can immediately tell which energy bins contrib. signif. to the total energy density.

the “energy function”

This is the most common approach.

 dE
dE

dn
n



Characterising the Angle-Averaged f(E)
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Pa the aim is to characterise the dist. func. in terms of the “energy func.” and look at its characteristics as a function of inten.    Here is an actual energy 
function taken from the simulationss at 1019. The characteristics of most interest are the energy peak (or bump), the average energy, the min. E defined as 
the energy above which 90% of the E flux is captured; the max E def. as the half-height and the energy spread given by the green line. 



Angular space?

Angular part of f(p)=f(E)f(ω) is well represented by:
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Nisam jos spomenuo angular space.   Na levo je the full energy func. in polar coordinates for 10^19 Wcm^-2.   If we average over energy and plot the resulting 
function as a function of the angular coordinate then we get the plot on the left, which turns out to be very well represented by a function of this form. N is 
chosen to match the half-height half-angle in the plot.



Hot electron energy scaling

Intensity for <E>=1MeV is about 2x1019Wcm-2.
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Pa prije dam vas formula for the distribution func. predstava-cu vam some of its basic characteristics. Of most interest is the scaling of the average energy 
with intensity which is the red line. The black line is the ponderomotive energy. The error bars on the simulation results represent the energy spread of the 
energy function.  Kao mozete videti the average energy is somewhat lower than the ponderomotive energy . How much lower exactly?

Error bar
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Characterising f(E)

Half-angle independent of 

intensity: about 25.5deg.

Average energy scales in same 

way as ponderomotive.
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To answer that question you can plot the ratio of the average energy to pond. energy (as a func of inten.) and the ratio is surprisingly constant at around 0.6 
...  
Sleduci characteristic of interest is the half-height half-angle which is also surprisingly constant at about 25.5deg. These two facts already make it easier to 
obtain a formula for f(p), but it gets even easier...



Characterising f(E)
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Generally true

Mi takode nademo that the energy spread is always about half of the peak energy and that the average energy nearly coincides with the peak energy.
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Fit to shifted-Gaussian
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A good fit  to the energy function is found with  a shifted-Gaussian so this is the final form for the fast electron dist. which is just found approximately by 
dividing the energy function by p^3. The parameters needed for the fit are easily found from the intensity via these formulae. Since this form for f diverges at 
small p we need to bear in mind that it’s only valid for momenta greater than that corresponding to the minimum E mentioned earlier (and this turns out to 
be always about 0.4 of the peak p). The plot on the right shows what happens when you invert back to get f – the red line fits f in just the right place...
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Simple models

Treating the fast electrons as 
a fluid, energy balance is:

fastfastE vEnI 

It is tempting to set 
nfast=relativistic critical 
density, but this is not true
(although it has the same
scaling):

fastfastp vpn
c

I


This is important because 
nfast determines the current 
transported: j=nfastvfast



Why 25.5deg ?

Imagine simple form in 

angular coordinate:
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Example: I=1x1019Wcm-2 phase space

•Fast electrons generated at 2w.
•Absorbed electrons are generated locally (they don’t sample large parts of the laser wave 
fields).
•Fast electrons seem to lose some energy as they flow into the target.....why?



Vacuum Energy = Ponderomotive ?

Yes, but why?
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Vacuum Energy = Ponderomotive ?

Electrons at front of return-pulse travel out ~1/4 wavelength and gain ~twice the 

ponderomotive energy; electrons at the back gain ~nothing.
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Potential Drop
Given vacuum electrons gain ~ponderomotive energies, why are the absorbed electrons at 

a lower energy?

A primary candidate for the energy extraction is the longitudinal electrostatic field.

0.4 oscV E The field exists to drive the return current.



How does the longitudinal field evolve?

Wave-Equation for E  
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How does the longitudinal field evolve?

Relativistically, strong plasma oscillations are induced by the external 

force. 

How long does the plasma have to respond to these oscillations? Only ¼ 

of a wave-period.



Hot electron energy scaling

Fast electron current scales as I1/2 so fast electrons always lose energy in proportion 

to that which they have (also I1/2) in order to drive the return current.

taken after

½-period



The peak longitudinal field
This field drives ion-acceleration and leads to profile-steepening.
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Summary

• Simple formula for f(E) in 

terms of I.

• Energy transferred to the 

return current reduces the 

fast-electron energy.
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What is E in a collisionless plasma?

• Usually the background plasma is collisional and we are interested 
in phenomena which occur on timescales longer than tcoll. This 
allows us to know the background momentum eqn on timescales 
>>tcoll and hence obtain E or j.

• In low density hot plasma tcoll becomes long so we don’t know 
how the background responds. In these circumstances the plasma is 
undamped and large plasma waves are possible. On timescales 
longer than wpb we can assume these oscillations are unimportant 
and average over them. What is left is an eqn relating the electric 
field to ALL plasma variables i.e. Including the hots. The background 
is not collisional and therefore responds to these terms.

• In a sense this is not Ohm’s Law, because it does not apply to a 
collisional system.



Long scale-lengths: more complicated
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Long scale-lengths: more complicated
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Fitting f(E)

•Don’t try to fit f(p). Instead fit to g(E) and 
invert back to f(p).
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Example 6x1019Wcm-2
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Example 6x1019Wcm-2
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Example 6x1019Wcm-2
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Hot electron energy scaling

Intensity for <E>=1MeV is about 2x1019Wcm-2.
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