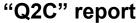


From HED laboratory astrophysics to extreme material dynamics: pushing the frontiers of experimental science

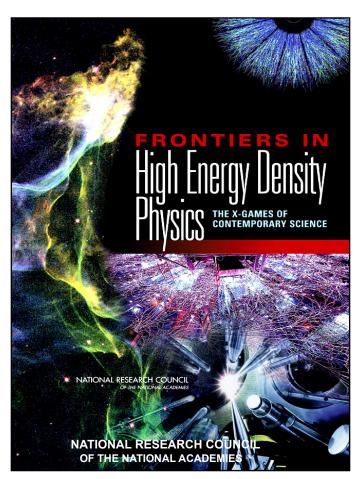
A presentation for the
Michigan Institute for Plasma Science and Engineering
1st Annual Graduate Student Symposium
University of Michigan, Ann Arbor, MI
September 29, 2010


Bruce A. Remington

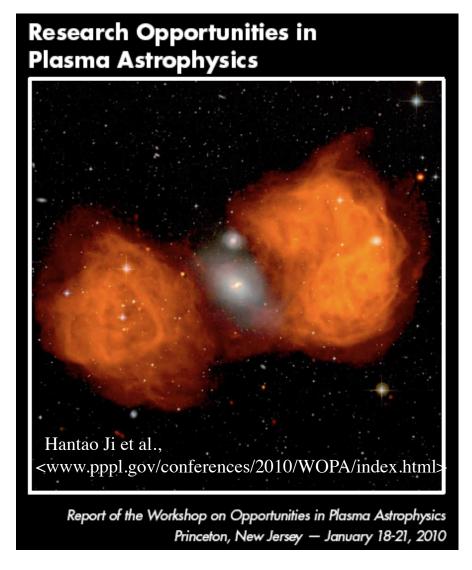
Lawrence Livermore National Laboratory • National Ignition Facility & Photon Science

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

The NRC CPU organized the physics of the universe around 11 fundamental questions in their Q2C report


Eleven science questions for the new century:

- 2. What is the nature of dark energy?
 - Type 1A SNe (burn, hydro, rad flow, EOS, opacities)
- 4. Did Einstein have the last word on gravity?
 - Accreting black holes (photoionized plasmas, spectroscopy)
- 6. How do cosmic accelerators work?
 - Cosmic rays (strong field physics, nonlinear plasma waves, collisionless shocks: nonrelativistic, relativistic)
- 8. Are there new states of matter at extreme HED?
 - Neutron star interior (photoionized plasmas, spectroscopy, EOS)
- 10. How were the elements made and ejected?
 - Core-collapse SNe (reactions off excited states, turbulent hydro, rad flow)
- **Excerpt from the conclusions:**
- HEDP provides crucial experiments to interpret astrophysical observations
- The field should be better coordinated across Federal agencies


[Michael Turner et al., National Academies Press (2003); http://www.nap.edu/]

NIF

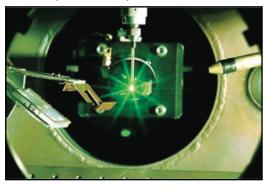
The NRC committee on HEDP issued the "X-Games" report detailing this new cross-cutting area of physics

[Ron Davidson et al., National Academies Press (2003); http://www.nap.edu/]

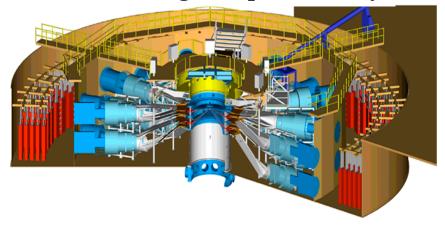
• Report from the Workshop on Plasma Astrophysics has just been released

Five fundamental questions for HED science

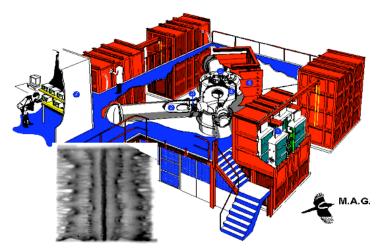
- How are stars born, evolve, and die?
- How is space-time warped by the strong gravity of black holes?

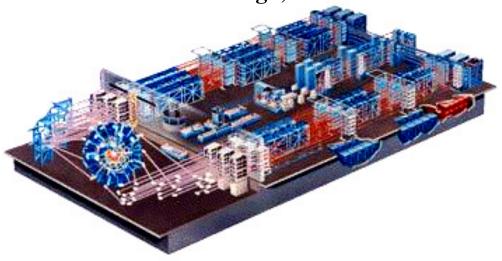

 Do black-holes spin? If so, how fast? What is the effect on the accretion disk?
- How are the heavy elements made and ejected in supernova explosions? How do supernovae invert inside-out so quickly?
- How are collisionless shocks formed?

 Are collisionless shocks the source of particle acceleration and cosmic rays?
- Are relativistic shocks the source of the gamma rays in Gamma Ray Bursts? Are they the source of ultrahigh energy cosmic rays?

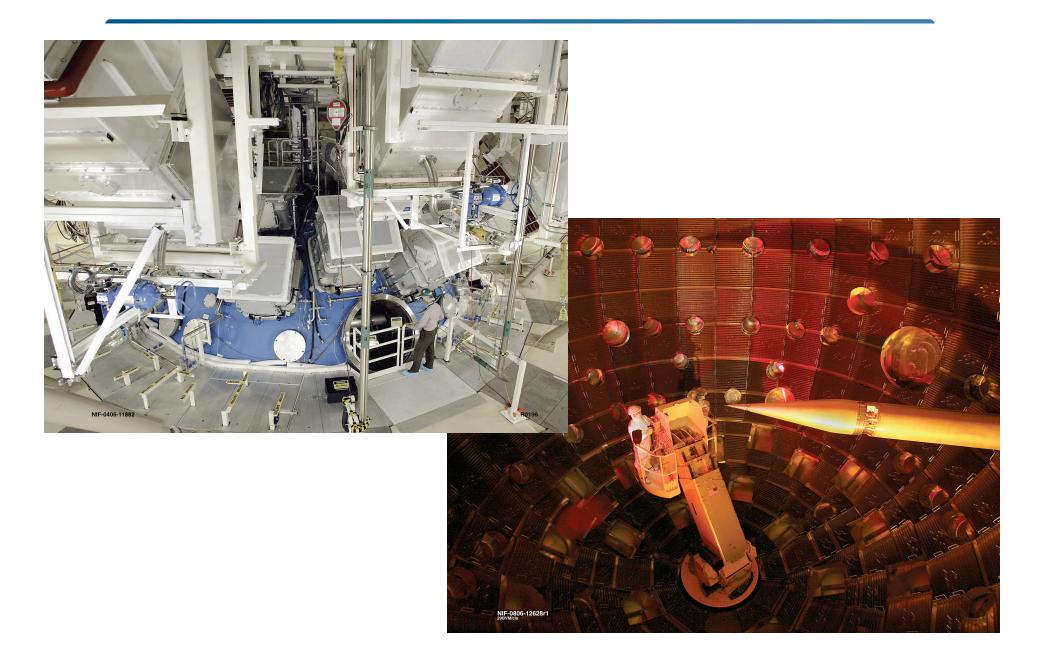


This frontier science is being pursued on a wide range of high energy density facilities around the world


Jupiter, Trident, Z-Beamlet, Vulcan, LULI, Gekko lasers


Z, ZR magnetic-pinch facility

Magpie magnetic-pinch facility

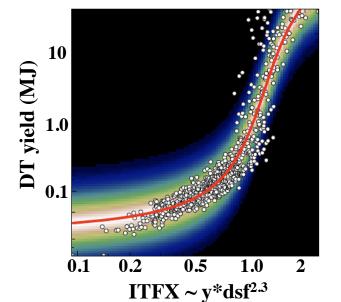


Omega, EP lasers

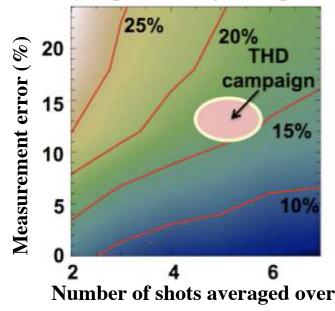
The National Ignition Facility has just started operations

The National Ignition Campaign is starting

ignition probability ~ fnc(ignition threshold factor, ITF)


 $\sim f_1(1D \text{ peak fuel implosion vel})$

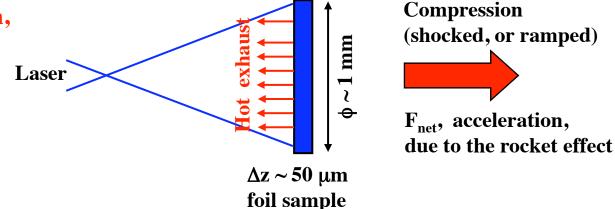
 $f_2(1D \text{ burn averaged imploded fuel adiabat}, \alpha)$


 f_3 (rms asym. of $\Delta R_{hotspot}/R_{hotspot}$ at hotspot-main fuel interface)

 f_4 (fraction $\Delta R_{max}/\Delta R_{fuel}$ of fuel mixed with ablator)

 $\sim f_5 (ITFX \sim y*dsf^{2.3})$

Uncertainty of predicted ignition probability



[Brian Spears et al., IFSA-2009, J. Phys.: Conf. Ser. 244, 022014 (2010); O.L. Landen et al., PoP 17, 056301 (2010)]

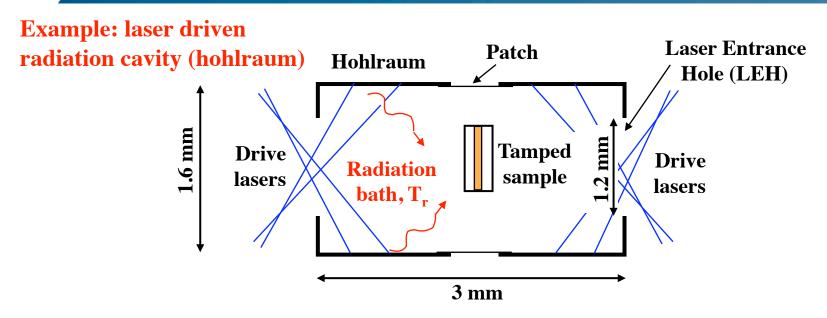
NIF

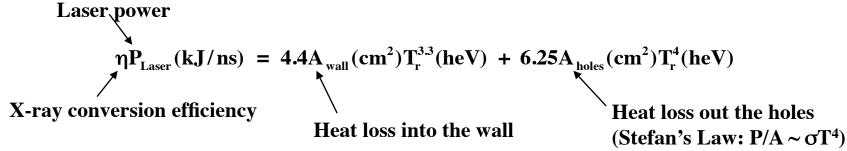
HED facilities, such as lasers, are ideal for producing localized regions of high pressure to "drive" experiments

Example: laser driven, ablative acceleration

Assume $E_L \sim 1$ kJ, $\lambda_L = 1/3$ μ m, a 1 mm diameter spot, for 1 ns:

$$I_L = \frac{10^3 \text{ J}}{\pi (0.05 \text{cm})^2 (10^{-9} \text{s})} = 1.3 \text{x} 10^{14} \text{ W/cm}^2$$

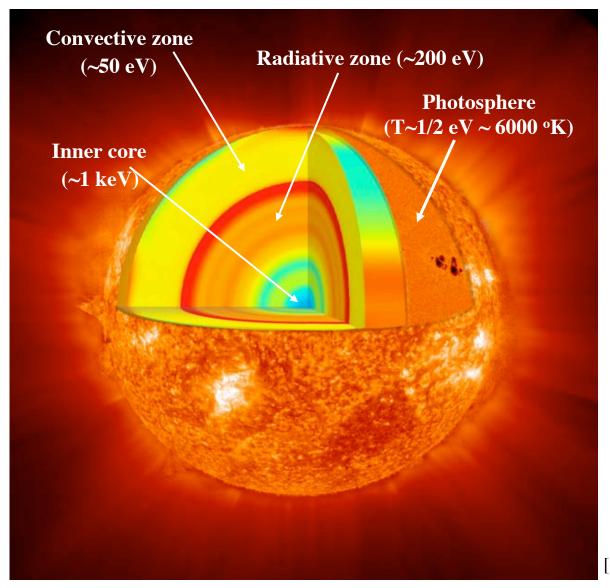

$$P_{abl}(Mbar) \approx 40 \left[\frac{I_{15}}{\lambda_{(\mu m)}} \right]^{2/3} = 40 \left[\frac{0.13}{1/3 \ \mu m} \right]^{2/3} \approx 21 \ Mbar = 21 \ x \ 10^{12} \ dyne/cm^2 = 2.1 \ TPa$$


- Newton's 2nd law, $P = \rho \cdot \Delta z \cdot g$, gives $g = 4.2 \times 10^{15} \text{ cm/s}^2 = 42 \mu\text{m/ns}^2 \sim (10^{12} 10^{13}) g_0$, yielding very high accelerations over ~1-10 ns
- Compare with the acceleration due to gravity at the surface of a neutron star: $g_{NS} = GM_{NS}/r^2 \sim G(1.5M_{Sun})/(15km)^2 \sim 10^{11} g_0$.

[Lindl, PoP 2, 3933 (1995), Eq. 47; Inertial Confinement Fusion (Springer, 1998); Rosen, PoP 6, 1690 (1999)]

NIF

Lasers and Z-pinches can also generate high temperature, radiation conditions for heating or "driving" samples



- Typical drive of P_L = 20 kJ / 1 ns at $\eta \sim 0.6$ gives $T_r \sim 2.16$ heV = 216 eV
- Corresponding ablation pressure: $P_{abl} \sim (3 \text{ Mbar}) \text{Tr}^{3.5} = (3 \text{Mbar}) (2.16 \text{ heV})^{3.5} = 44 \text{ Mbar}$

[Lindl, Inertial Confinement Fusion (Springer, 1998); PoP 2, 3933 (1995)]

NIE

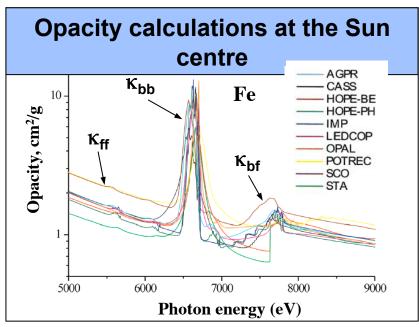
Hohlraum temperatures are put into perspective by comparing with the temperature of the sun

How hot is 200 eV?

- 200 eV = 400 x temperature at the surface of sun
- 200 eV = 2 million deg., roughly the temperature at about 1/3 of the way to the center of the sun at the radiative zone

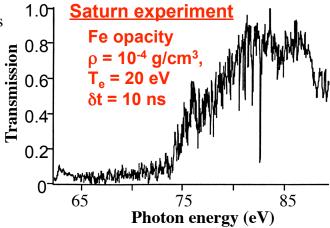
[<http://www.solarviews.com/eng/sun.htm>]

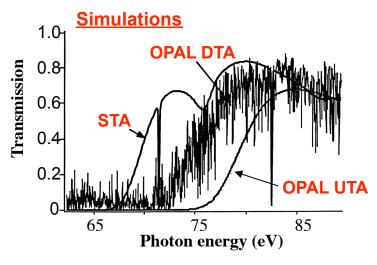
Opacities control the rate of radiation moving through matter, ie, radiation transport


Opacity couples radiation and matter through the Radiative Transfer Equation

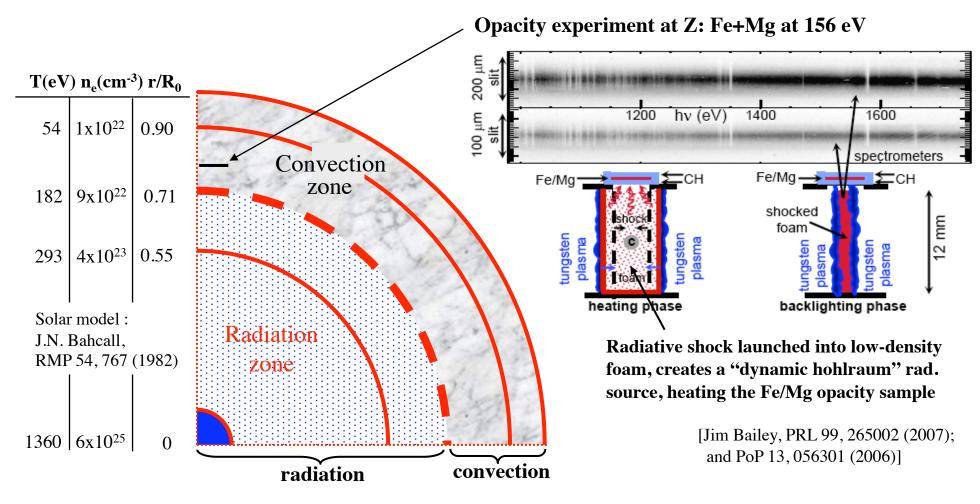
$$\nabla \cdot \mathbf{I}_{v} = \rho \eta_{v} - \rho \kappa_{v} \mathbf{I}_{v}$$
, where $\kappa_{v}(\rho, T, Z) = \kappa_{BB} + \kappa_{BF} + \kappa_{FF} + ...$

Radiation intensity Emissivity


where $dE = I_v \cdot dA \cdot dt \cdot d\Omega \cdot d\nu$

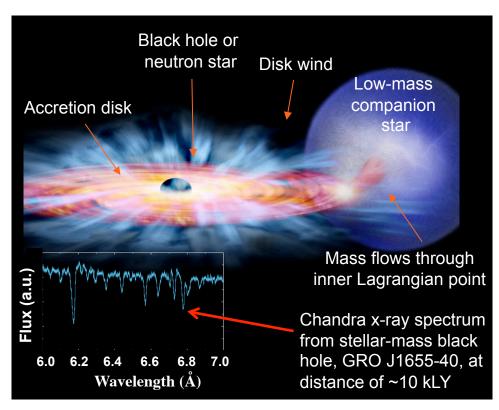

Opacity
[Rybicki, Radiative Processes
(John Wliey & Sons, 1979)]

- Slight variations in the opacity model can have major consequences, for ex., on the standard solar model (abundances)
- Hot opacities of "high-Z" matter are very hard to calculate
- Need experiments to test the theories and models

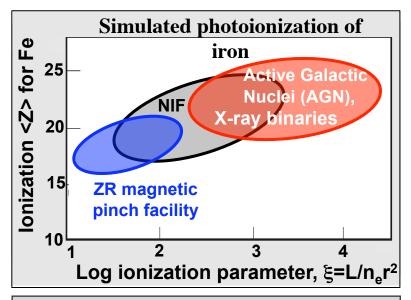


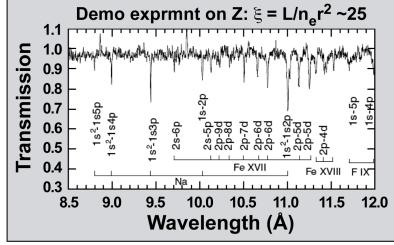
[P.T. Springer, JOSRT 58, 927-935 (1997)]

Opacity and radiation transport control the temperature profile inside the star



[Courtesy of Jim Bailey (2007)]

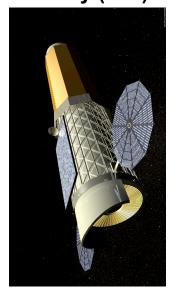

- Hohlraums driven by Z-pinches or lasers are ideal for opacity measurements at stellar interior conditions
- Next generation facilities ZR, NIF will reach conditions relevant to the stellar radiative zone

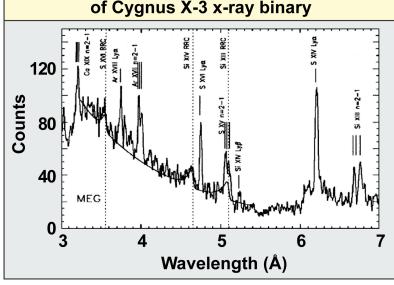


Laboratory experiments on the physics of photoionized plasmas from accretion-powered black holes are also possible on HED facilities

[D.A. Liedahl et al., *LDRD-ER proposal* (2010); M.E. Foord et al., *PRL 93*, 055002 (2004); http://chandra.harvard.edu/photo/2006/j1655/more.html]

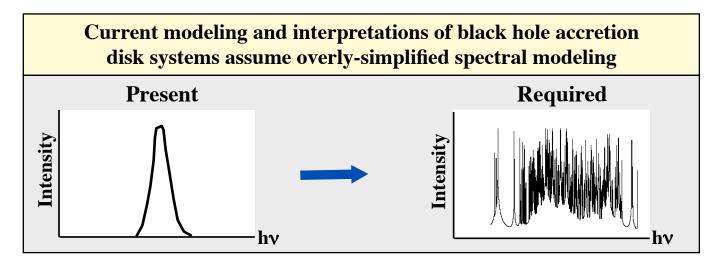
- How is space-time warped by the strong gravity of black holes?
- [M.E. Foord et al., *PRL 93*, 055002 (2004)]
- Do black-holes spin? If so, how fast? What is the effect on the accretion disk?

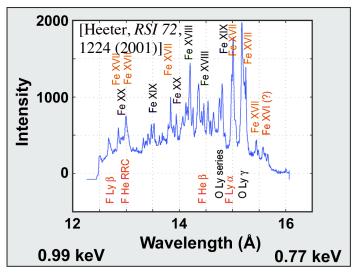

Observations with x-ray satellites, current and future, are aimed at understanding black hole dynamics and spin

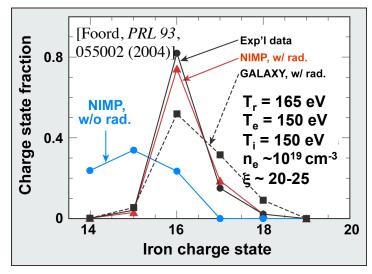

Astro-H 2014

International X-ray
Observatory (IXO) 2021

Chandra x-ray spectrum of Cygnus X-3 x-ray binary


[Paerels, *Ap. J.* 533, L135 (2000)]


- The observations will be x-ray spectra
- The interpretations will be based on simulations
- The results will be sensitive to the input photoionization models


[Courtesy of Duane Liedahl (2010)]

Properly interpreting accreting black hole spectra will require a better understanding of x-ray photoionized iron

- The techniques for studying x-ray photoionized Fe have been developed on Z and Omega
- NIF will access ionization parameters up to 1000 or more, relevant to accreting black holes

Developing a scaled photoionized plasma experiment requires "steady state" conditions of an extremely bright x-ray flux

$$\beta_i n_i + n_e C_i n_i = n_e \alpha_{i+1} n_{i+1} + n_e^2 \alpha_{3,i+1} n_{i+1}$$

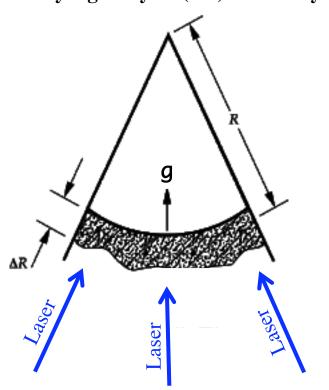
[Liedahl et al. (1999); (2003); Krolik (2000); Remington et al., RMP 78, 755 (2006)]

Collisional ionization equilibrium (CIE), or coronal equilibrium, when $\beta_i \approx 0$, and at low densities $\alpha_{3,i+1} \approx 0$:

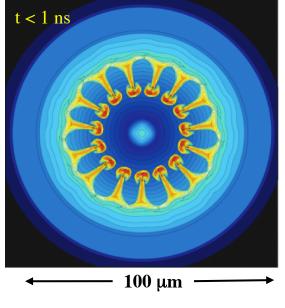
$$\left(\frac{\mathbf{n}_{i+1}}{\mathbf{n}_{i}}\right)_{\text{CIE}} = \frac{\mathbf{C}_{i}}{\mathbf{\alpha}_{i+1}}$$

Photoionization equilibrium (PIE) when:
$$\beta_i >> n_e C_i$$
: $\left(\frac{n_{i+1}}{n_i}\right)_{PIE} = \frac{\beta_i}{n_e \alpha_{i+1}} = \frac{L_x}{n_e r^2} \frac{\phi_i}{\alpha_{i+1}} = \xi \frac{\phi_i}{\alpha_{i+1}}$

where $\xi = \frac{L_x}{n r^2}$ is the ionization parameter, Lx is the pt. x-ray luminosity (erg/s) into 4π

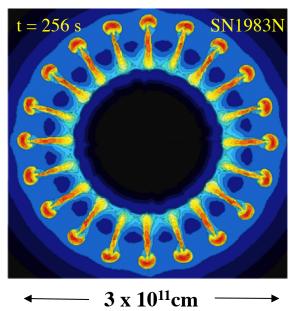

Combining these two relations gives: $\left(\frac{\mathbf{n}_{i+1}}{\mathbf{n}_{i}}\right) = \frac{\mathbf{C}_{i}}{\mathbf{C}_{i}} \left(1 + \frac{\xi \phi_{i}}{\mathbf{C}_{i}}\right)$ $\xi << \frac{\mathbf{C}_{i}}{\phi_{i}}$ gives CIE, $\xi >> \frac{\mathbf{C}_{i}}{\phi_{i}}$ gives PIE

- Photoionized plasmas are "overionized": $\langle Z \rangle$ always larger than CIE plasma at same T_e
- Accreting black holes, such as low-mass x-ray binaries (LMXB) have $\xi > \sim 100$
- Experiments being designed for NIF should be able to achieve values of ξ , relevant to LMXBs, due to the very high values of x-ray flux likely to be possible



The Rayleigh-Taylor (RT) instability affects ICF capsule performance and supernova explosion dynamics

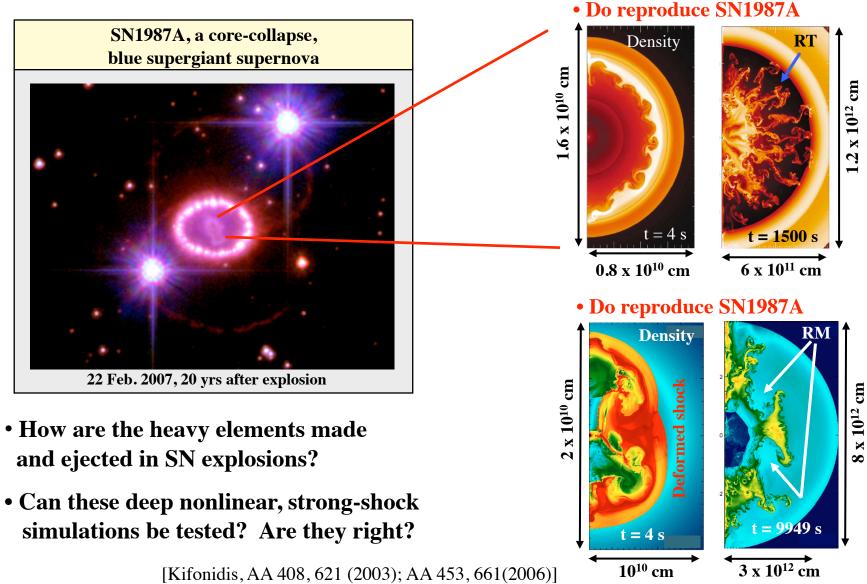
Ablation front, surface perturbation growth due to Rayleigh-Taylor (RT) instability



Stagnation RT growth in ICF

[Sakagami, PoFB 2, 2715 (1990)]

Core-collapse supernova explosion



Hachisu et al., Ap.J.Lett. 368, L27 (1991)

- Laser ablation drives the ICF capsule implosion; nonuniformities imprint onto capsule surface
- These nonuniformities grow by the RT instability; feed through to inner surface
- Inner surface nonuniformities grow during deceleration and stagnation; degrade performance
- Turbulent RT growth in SN explosions mixes core material outwards, to be ejected

SN1987A is a good example where hydrodynamic instabilities are invoked to explain the observations

A practical example of "Euler scaling" is a scale transformation that leaves the Euler equations invariant

$$\frac{\partial \vec{\mathbf{v}}}{\partial t} + \vec{\mathbf{v}} \cdot \nabla \vec{\mathbf{v}} = -\frac{1}{\rho} \nabla \mathbf{p}$$

 $\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \nabla \vec{v} = -\frac{1}{0} \nabla p$ Example: force equation, neglecting viscosity and magnetic fields

$$\frac{\partial \mathbf{v}_{s}}{\partial \mathbf{t}_{s}} + \mathbf{v}_{s} \frac{\partial \mathbf{v}_{s}}{\partial \mathbf{x}_{s}} = -\frac{1}{\rho_{s}} \frac{\partial \mathbf{p}_{s}}{\partial \mathbf{x}_{s}}$$
 Assume 1D, and write force eq. for the star or SN

Transform from the star or SN to the ℓ ab:

$$\frac{\frac{\mathbf{a}}{\mathbf{d}}\delta\mathbf{v}_{\ell}}{\mathbf{d}\delta\mathbf{t}} + \frac{\mathbf{a}}{\mathbf{d}}\mathbf{v}_{\ell}\frac{\frac{\mathbf{a}}{\mathbf{d}}\delta\mathbf{v}_{\ell}}{\mathbf{a}\delta\mathbf{x}_{\ell}} = -\frac{1}{\mathbf{b}\rho_{\ell}}\frac{\mathbf{c}\delta\mathbf{p}_{\ell}}{\mathbf{a}\delta\mathbf{x}_{\ell}}$$

$$\frac{\mathbf{d}^{2}}{\mathbf{a}} \left\{ \frac{\mathbf{a}}{\mathbf{d}^{2}} \frac{\partial \mathbf{v}_{\ell}}{\partial \mathbf{t}_{\ell}} + \frac{\mathbf{a}}{\mathbf{d}^{2}} \mathbf{v}_{\ell} \frac{\partial \mathbf{v}_{\ell}}{\partial \mathbf{x}_{\ell}} = -\frac{\mathbf{c}}{\mathbf{a}\mathbf{b}} \frac{1}{\rho_{\ell}} \frac{\partial \mathbf{p}_{\ell}}{\partial \mathbf{x}_{\ell}} \right\}$$

$$\frac{\partial \mathbf{v}_{\ell}}{\partial \mathbf{t}_{\ell}} + \mathbf{v}_{\ell} \frac{\partial \mathbf{v}_{\ell}}{\partial \mathbf{x}_{\ell}} = -\left(\frac{\mathbf{d}^{2}}{\mathbf{a}} \frac{\mathbf{c}}{\mathbf{a} \mathbf{b}}\right) \frac{1}{\rho_{\ell}} \frac{\partial \mathbf{p}_{\ell}}{\partial \mathbf{x}_{\ell}}$$

Want:
$$\frac{d^2}{a} \frac{c}{ab} = 1$$

So:
$$\mathbf{d} = \left(\frac{\mathbf{a}^2 \mathbf{b}}{\mathbf{c}}\right)^{1/2} = \mathbf{a} \left(\frac{\mathbf{b}}{\mathbf{c}}\right)^{1/2}$$

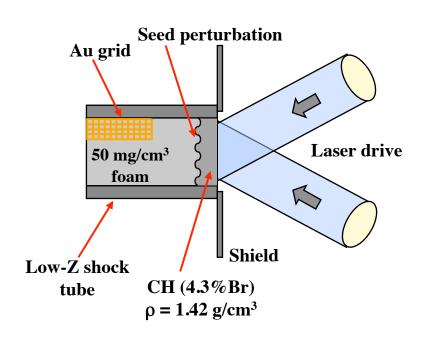
$$x_{s} = ax_{\ell}$$

$$\rho_{s} = b\rho_{\ell}$$

$$p_{s} = cp_{\ell}$$

$$t_{s} = dt_{\ell}$$

$$v_{s} = \frac{x_{s}}{t} = \frac{a}{d} \frac{x_{\ell}}{t} = \frac{a}{d} v_{\ell}$$


Want:
$$\frac{d^2}{a} \frac{c}{ab} = 1$$
 So:
$$d = \left(\frac{a^2b}{c}\right)^{1/2} = a\left(\frac{b}{c}\right)^{1/2}$$
 Eu =
$$\frac{L^*}{\tau^*} \left(\frac{\rho^*}{p^*}\right)^{1/2} = \text{in variant}$$

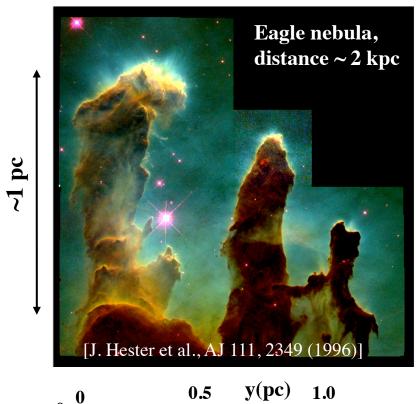
Then setting $t_s = a \left(\frac{b}{c}\right)^{1/2} t_{\ell}$ leaves the Euler equations invariant under this transformation

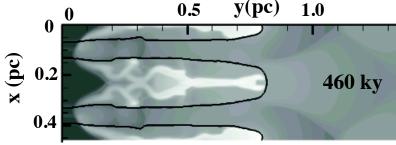
[Ryutov et al., Ap.J. 518, 821 (1999)]

Scaled, strong-shock, laser experiments have been developed that reproduce the dynamics of the SN He-H interface

Omega expt. time scale (ns)									
6	5	10	15	20	25	30	35	40 ₈₄	
_								70	CH-
He-H vel (10^8 cm/s)	SN 1987A —— experiment							56	Foam
el (1) s								42	vel (
л Н-э	-				~			28	n/m/r
Ħ 1	[Ro	bey et	al., P	PoP 8,	2446	(2001	.)]	14	
0	<u> </u>							0	
0	0.5	1 SN	1.5 1987 <i>A</i>	2 A time	2.5 scale	$\begin{array}{c} 3 \\ 2 & (10^3 \end{array}$	3.5 s)	4	

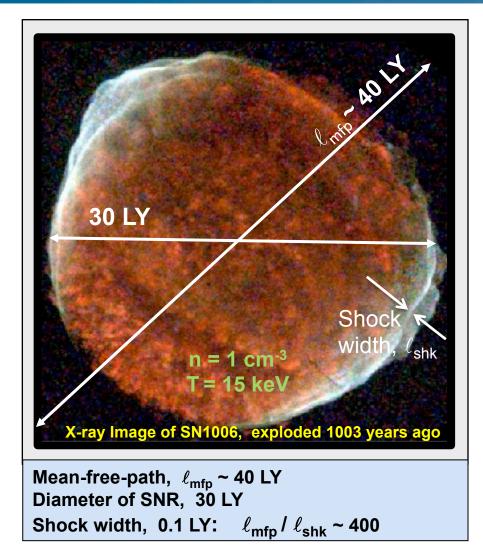
<u>Parameter</u>	SN1987A	Lab experiment				
L(cm)	$9x10^{10}$	5.3×10^{-3}				
v(cm/s)	$2x10^{7}$	1.3×10^5				
$\rho(g/cm^3)$	7.5×10^{-3}	4.2				
P(erg/cm ³)	3.5×10^{13}	$6x10^{11}$				
Eu	0.29	0.34				
Re	2.6×10^{10}	1.9×10^6				
Pe	2.6×10^5	1.8×10^3				
Eu = $v(\rho/P)^{1/2} = (h/\tau)(\rho/P)^{1/2} = Euler number$						


Omega Laser data t = 13 nsYoung t = 37 nsShock


[Miles et al., PoP 12, 056317 (2005); Kuranz et al., ApSS 298, 9 (2005); ApSS 307, 115 (2007)]

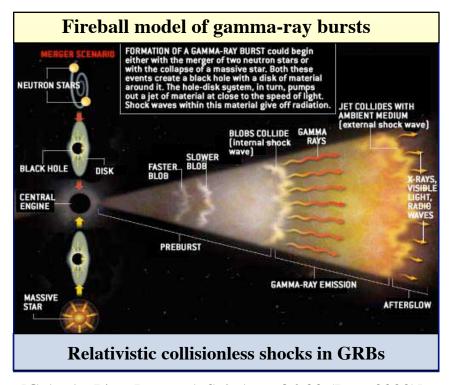
One new class of astrophysics experiments planned for NIF will look at modifications to the hydrodynamics due to strong radiation

Stellar birth



[A. Mizuta, ApSS 298, 197 (2005); D.D. Ryutov, ApSS 307, 173 (2007)]

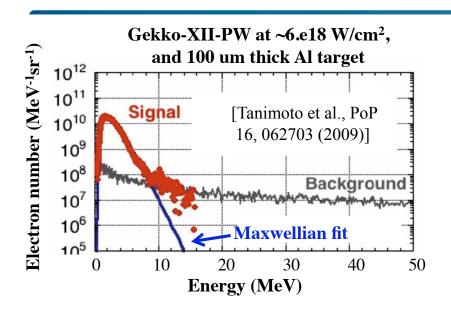
SNR shocks are collisionless; the ion-ion (Coulomb) collision mean free path is much larger than the shock width

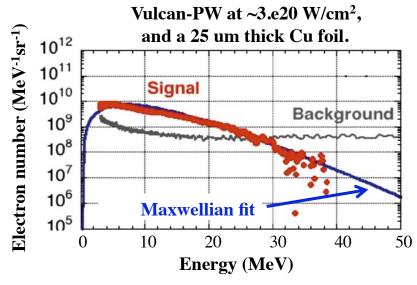


- How are collisionless shocks formed?
- How do collisionless shocks accelerate particles and generate cosmic rays?

A new frontier in HED laboratory astrophysics is to use relativistic plasmas to create an electron-positron "fireball"

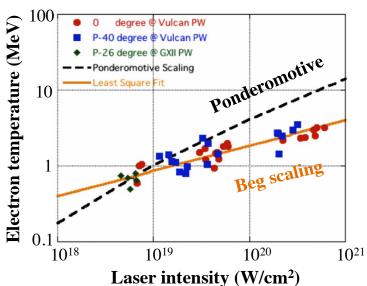
Can scaled "fireballs" or jets of (e⁺, e⁻) pairs can be created using ultraintense lasers to mimic aspects of gamma-ray burst (GRB) dynamics




[Gehrels, Piro, Leonard, Sci. Am., 86-90 (Dec, 2002)]

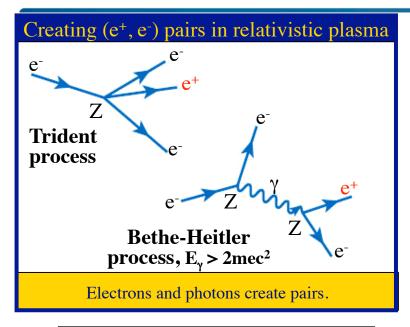
- Can a relativistic collisionless shock be generated in the laboratory?
- Are relativistic shocks the source of the gamma rays in gamma-ray bursts?
- Are relativistic shocks the source of ultrahigh energy cosmic rays?

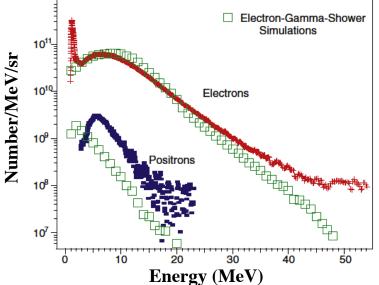
Short pulse, high intensity lasers can generate intense fluxes of relativistic electrons

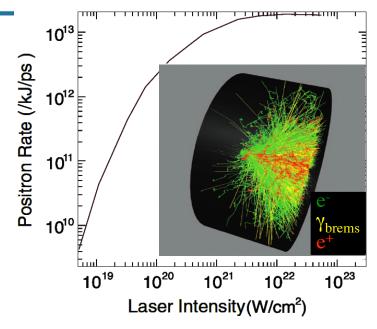

Relativistic Maxwellian electron distribution:

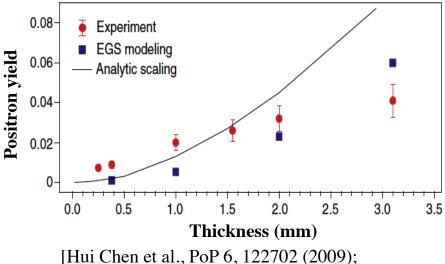
$$\mathbf{N}(\mathbf{E}) = \mathbf{N}_0 \; \mathbf{E}^2 \; \mathbf{e}^{-\mathbf{E}/\mathbf{T}}$$

Ponderomotive scaling: $T_{hot} \approx m_e c^2 \left[\sqrt{1 + \frac{I\lambda^2}{1.4 \times 10^{18}}} - 1 \right]$ [S.C. Wilks, PRL 69, 1383 (1992); A. Pukhov, PoP 6, 2847 (1999)]


Beg scaling:
$$T_{hot}(MeV) \approx 0.4 (I_{18} \lambda_{\mu m}^2)^{1/3}$$

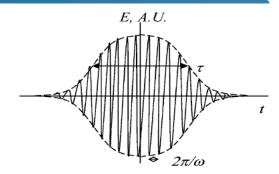

[F.N. Beg et al., PoP 4, 447 (1997); Tanimoto et al., PoP 16, 062703 (2009)]




NIF

Short pulse, high intensity lasers can also now generate intense fluxes of relativistic positrons

PRL 102, 105001 (2009); PRL 105, 015003 (2010)]



Scaling relations are being developed for this PW regime

Assume that the electrons are

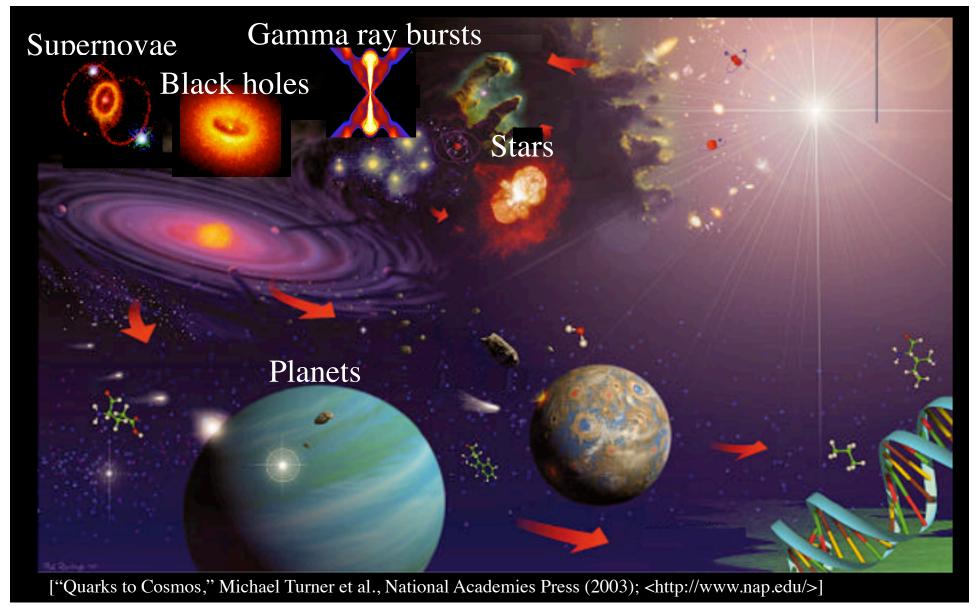
- (1) in the collisionless regime, and
- (2) that their initial temperature is negligible compared to the heating due to the PW laser deposition.

Then start with the Maxwell-Vlasov equations:

$$\frac{\partial f}{\partial t} + \vec{v} \cdot \frac{\partial f}{\partial \vec{r}} - e \left(\vec{E} + \frac{1}{c} \vec{v} \times \vec{B} \right) \cdot \frac{\partial f}{\partial \vec{p}} = 0 \quad , \qquad \nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \quad , \qquad \nabla \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} \vec{j}$$

$$\vec{v} = \frac{c\vec{p}}{(p^2 + m^2c^2)^{1/2}}$$
, $n_e(cm^{-3}) = \int f \cdot d^3p$, $j = -e \int v \cdot f \cdot d^3p$, $p_0 = \frac{eE_0}{\omega}$

Put in dimensionless form, then match the key dimensionless parameters:


$$T = \omega \cdot \tau \qquad , \qquad R = \frac{L\omega}{c} \qquad , \qquad S = \frac{4\pi n_0 ec}{E_0 \omega} \qquad , \qquad U = \left(\frac{ZeE_0}{M\omega c}\right)^{1/2}$$

The number of 'input' parameters is 6: $\omega, \tau, L, E_0, n_0, M/Z$. The number of dimensionless parameters that needs to stay fixed is 4. So one can arbitrarily choose 2 of the parameters; the other 4 have to be set to keep T, R, S, and U fixed.

[D.D. Ryutov, PPCF 48, L23 (2006); Pukhov, PPCF 46, B13 (2004); Gordienko, PoP 12, 043109 (2005)]

Overarching questions of the universe can be addressed by combining astronomical observations, simulations, and laboratory experiments

