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The NRC CPU organized the physics of the universe

around 11 fundamental questions in their Q2C report

“Q2C” report Eleven science questions for the new century:
Connectin \ 2. What is the nature of dark energy?
5 NP 5 — Type 1A SNe (burn, hydro, rad flow, EOS, opacities)
A ] o
with the asmas 4. Did Einstein have the last word on gravity~
Eleven Sc:ence Questlons for the New Cﬁrlur - Accreting bIaCK hOIeS (phOtOionized
X i’ g A ._y : plasmas, spectroscopy)

6. How do cosmic accelerators work?
— Cosmic rays (strong field physics, nonlinear
plasma waves, collisionless shocks:
nonrelativistic, relativistic)

8. Are there new states of matter at extreme HED?
— Neutron star interior (photoionized plasmas,
spectroscopy, EOS)

NATIONAL RESEARCH COUNCIL
OF THE NATIONAL ACADEMIES

10. How were the elements made and ejected?
— Core-collapse SNe (reactions off excited states,
Excerpt from the conclusions: turbulent hydro, rad flow)

 HEDP provides crucial experiments to interpret astrophysical observations
* The field should be better coordinated across Federal agencies

[Michael Turner et al., National Academies Press (2003); <http://www.nap.edu/>]
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The NRC committee on HEDP issued the “X-Games”
report detailing this new cross-cutting area of physics

Research Opportunities in
Plasma Astrophysics

, ' ih Energy Dnsiy

-

Y THE X-GAMES OF
3 CONTEMPORARY SCIENCE
3
S

Hantao Ji et al., _ : : !
<www.pppl.gov/conferences/2010/WOPA/index .html

i 5 ‘ 4 : o\ N
2L W
NATIO&AI?R%E‘ARCH c’:' \

OF THE:NATIONAL ACABEMIES
HE: A = v

[Ron Davidson et al., National Academies Press

(2003); <http://www.nap.edu/>] Report of the Workshop on Opportunities in Plasma Astrophysics
Princeton, New Jersey — January 18-21, 2010

* Report from the Workshop on Plasma Astrophysics has just been released
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Five fundamental questions for HED science

* How are stars born, evolve, and die?

* How is space-time warped by the strong gravity of black holes?
Do black-holes spin? If so, how fast? What is the effect on the accretion disk?

* How are the heavy elements made and ejected in supernova explosions?
How do supernovae invert inside-out so quickly?

* How are collisionless shocks formed?
Are collisionless shocks the source of particle acceleration and cosmic rays?

* Are relativistic shocks the source of the gamma rays in Gamma Ray Bursts?
Are they the source of ultrahigh energy cosmic rays?
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This frontier science is being pursued on a wide range

of high energy density facilities around the world

Jupiter, Trident, Z-Beamlet, Z, ZR magnetic-pinch facility
Vulcan, LULI, Gekko lasers — _—

— 1 ‘n
yo I
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The National Ignition Facility has just started operations

NIF-0806-12628r1
20BVM/cls




The National Ignition Campaign is starting

DT yield (MJ)

&
[y

-
—

=
o

0.1

ignition probability ~ fnc(ignition threshold factor, ITF)
~ {,(1D peak fuel implosion vel)-
f,(1D burn averaged imploded fuel adiabat, o)
f;(rms asym. of ARy,,/R
f,(fraction AR . /AR; . of fuel mixed with ablator)
~ fs ITFX ~ y*dsf?3)

hotspot At hotspot-main fuel interface)-

fue

Uncertainty of predicted ignition probability

S 20
bt |
S
= 15
<>
=
@ 10
= ;
& :
z 5
&
D
Z 0
0.2 05 1.0 2 2 4 el
ITFX ~ y*dsf?3 Number of shots averaged over

[Brian Spears et al., [IFSA-2009, J. Phys.: Conf. Ser. 244,022014 (2010);
O.L. Landen et al., PoP 17, 056301 (2010)]
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HED facilities, such as lasers, are ideal for producing

localized regions of high pressure to ‘“drive” experiments

) Compression
(shocked, or ramped)

=
= )
l
-

F . acceleration,

Example: laser driven,
ablative acceleration

Laser

v due to the rocket effect
Az ~ 50 pm
foil sample
Assume E; ~1kJ, A, =1/3 um, | 10 = 1.3x10“W/cm’

a 1 mm diameter spot, for 1 ns: “ 1(0.05cm)*(107s)

0.13
1/3 pm

2/3
P, (Mbar) =~ 40[Ii} = 40[

(pm)

2/3
] ~ 21 Mbar = 21x 10" dyne/cm’* = 2.1 TPa

* Newton’s 2nd law, P = p-Az-g, gives g=4.2 x 10'5 cm/s?>= 42 pm/ns? ~ (10'2-1013) g, ,
yielding very high accelerations over ~1-10 ns

* Compare with the acceleration due to gravity at the surface of a neutron star:
Ons = GMy¢/r? ~ G(1.5Mg,)/(15km)? ~ 10! g,.

Sun

[Lindl, PoP 2, 3933 (1995), Eq. 47; Inertial Confinement Fusion (Springer, 1998); Rosen, PoP 6, 1690 (1999)]
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Lasers and Z-pinches can also generate high temperature,

radiation conditions for heating or ‘‘driving” samples

Example: laser driven

radiation cavity (hohlraum Patch Laser Entrance
y ( ) Hohlraum _ / Hole (LEH)
£ 1\ \ |
= Drive Tamped & Dri
Radiation = rive
2| lasers bt T sample S Tasers
) 3 mm .
Lasergi)wer
nPLaser (kJ / nS) = 4‘4A wall (CIIIZ)F[‘I'S,.3 (heV) + 6°25A holes (CmZ)T: (heV)
X-ray conversion efficiency ) Heat loss out the holes
Heat loss into the wall (Stefan’s Law: P/A ~ oT%)

* Typical drive of P,=20kJ /1 ns at n ~0.6 gives T, ~2.16 heV =216 eV

* Corresponding ablation pressure: P, ~ (3 Mbar)Tr3* = (3Mbar)(2.16 heV)3® = 44 Mbar

[Lindl, Inertial Confinement Fusion (Springer, 1998); PoP 2, 3933 (1995)]
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Hohlraum temperatures are put into perspective

by comparing with the temperature of the sun

Convective zone
(~50 eV) Radiative zone (~200 eV)

Photosphere
(T~1/2 eV ~ 6000 °K)

How hot is 200 eV?

* 200 eV =400 x temperature
at the surface of sun

Inner core

* 200 eV = 2 million deg., roughly
the temperature at about 1/3 of
the way to the center of the sun
at the radiative zone

[<http://www.solarviews.com/eng/sun.htm>]
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Opacities control the rate of radiation moving
through matter, ie, radiation transport

Opacity couples radiation and matter through the Radiative Transfer Equation

V'L =pn, -px,I,, where  (p,T,Z) =Ky, + Kyp + Kpp + oo
Rad - E . ™ (0)
adiation intensity missivity pacity .
_ [Rybicki, Radiative Processes 1.0] Saturn ex.perlment
where dE = IV- dA - dt- dQ:-dv (JOhIl Whey & SOHS, 1979)] - 0.8 Fe OpaCIty
)

S p =10 g/lcm3,
Opacity calculations at the Sun £06] T.=20eV
7 ot=10ns
centre o 2 0.4
10 — C’gﬁ
7] —H -BE
o0 —— HOPE-PH 0.2]
a — IMP
g ——LEDCOP 0 T T T T T
- —— OPAL 65 75 85
= ot ggéREC Photon energy (eV)
§ ——STA Simulati
A imulations
© . 1.04
] P — = el OPAL DTA
g go ANl
~ T T T 1 g |, 8 uuﬂi ‘!.ﬁ H
5000 6000 7000 8000 9000 g 0.6 ’. ! |
Photon energy (eV) S 0.4 STA ; ‘
[Courtesy of Prav Patel, LLNL (2009)] = 0.2
2 | |
* Slight variations in the opacity model can have major Aowadin Y OPAL UTA
consequences, for ex., on the standard solar model (abundances) 0“ 75 ‘ 25
« Hot opacities of “high-Z’’ matter are very hard to calculate Photon energy (eV)
* Need experiments to test the theories and models [P.T. Springer, JQSRT 58, 927-935 (1997)]
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Opacity and radiation transport control
the temperature profile inside the star

Opacity experiment at Z: Fe+Mg at 156 eV

E A
T(eV) n(cm>) r/R, S T[T — ————
oy 1 1 4
£ A 1200 hv (eV) 1400 1600
54 |1x10%2 | 0.90 Bk | T ——————— i
= t spectrometers

Convection

182 [ 9x10%2| 0.71

2931 4x10%3| 0.55

tungsten
plasma

tungsten
plasma

heating phase backlighting phase

Solar model : --:~:-:-:~:-:-:~:-:;;:55555:5555:::55551:-
J.N. Bahcall,
RMP 54,767 (1982)

Radiative shock launched into low-density
foam, creates a ‘“‘dynamic hohlraum” rad.
source, heating the Fe/Mg opacity sample

[Jim Bailey, PRL 99, 265002 (2007);

1360 | 6x10% 0
and PoP 13,056301 (2006)]

radiation convection
[Courtesy of Jim Bailey (2007)]

* Hohlraums driven by Z-pinches or lasers are ideal for opacity measurements at stellar interior conditions
* Next generation facilities - ZR, NIF - will reach conditions relevant to the stellar radiative zone
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Laboratory experiments on the physics of photoionized plasmas

from accretion-powered black holes are also possible on HED facilities

Black hole or
neutron star

Accretion disk

Mgt '
=- MJ | "'J’Lﬂ‘\ ) N““'N‘\ (\W\ 'NV\" r\ \ A A
| vy 1 IRLY; v

\f \ /
iV |
v !

60 62 64 66 68 7.0
Wavelength (A)

Disk wind
Low-mass
companion

Mass flows through
inner Lagrangian point

Chandra x-ray spectrum
from stellar-mass black

hole, GRO J1655-40, at
distance of ~10 kLY

[D.A. Liedahl et al., LDRD-ER proposal (2010);
M.E. Foord et al., PRL 93, 055002 (2004);
http://chandra.harvard.edu/photo/2006/j1655/more .html]

* How is space-time warped by the strong gravity of black holes?

lonization <Z> for Fe

Simulated photoionization of

iron
25
20— ‘
15, zr magnetic
pinch facility
| | |
10 1 2 3 4

Log ionization parameter, E=L/n_r?

Transmission
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[M.E. Foord et al., PRL 93,055002 (2004)]

* Do black-holes spin? If so, how fast? What is the effect on the accretion disk?
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Observations with x-ray satellites, current and future, are

aimed at understanding black hole dynamics and spin

International X-ray
Astro-H 2014 Observatory (1XO) 2021

Chandra x-ray spectrum
of Cygnus X-3 x-ray binary

S XV Lya

Co XIX n=2-1

2
Si XV RRC
ceee. SN0 RRC ]

120

— S$)XVIlya

Si XlIl n=2=1

Counts

Wavelength (A)
[Paerels, Ap. J. 533,L135 (2000)]

* The observations will be x-ray spectra
* The interpretations will be based on
simulations

* The results will be sensitive to the
input photoionization models

[Courtesy of Duane Liedahl (2010)]
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Properly interpreting accreting black hole spectra will

require a better understanding of x-ray photoionized iron

Current modeling and interpretations of black hole accretion
disk systems assume overly-simplified spectral modeling

Present Required
= =
og .5
1) ) §
= =
- e
hv hv
2000 . . 3 L L I T T T I
[Heeter, RS/ 72,; z= = c | [Foord, PRL 93, o ot
’1224%25001)]_ e ® e 2 0.8 055002 (2004) NIMP, w/ rad. -
‘a, a § // GALAXY, w/ rad.
@ 10007 =< o NIMP, / T,=165eV
9 o 8 - wio rad. / T,=150eV
- N o 041 l [ T,=150eV |
9 g M =4 " n,~10"%cm?3 |
0f /& =253 £ f g ~20-25
~F: odo © m.
I I I ‘ I 0 I ! ! \\\*\
12 W 14| th (A) e 14 16 18 20
avelen
0.99 keV 9 0.77 keV Iron charge state

* The techniques for studying x-ray photoionized Fe have been developed on Z and Omega
* NIF will access ionization parameters up to 1000 or more, relevant to accreting black holes
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Developing a scaled photoionized plasma experiment requires

“steady state” conditions of an extremely bright x-ray flux

[Liedahl et al. (1999); (2003); Krolik (2000);

2
ﬁini + neCini =nQ;, n, .+ nea3,i+1ni+1 Remington et al., RMP 78, 755 (2006)]
Collisional ionization equilibrium (CIE), or coronal ;. — Ci
equilibrium, when ; = 0, and at low densities o ;,,~ 0: n, .. Qi
o e e eper e n;,, _ Bi _ Lx ¢i _ q)i
Photoionization equilibrium (PIE) when: g, >>n,C, : — | = =3 =&
0 o DOy DI O, Qi1

where & = Xz is the ionization parameter, Lx is the pt. x-ray luminosity (erg/s) into 4n
nr

(¢

n. B o, E>> C,/¢; gives PIE

1 1+

1

n ) C, (1 N Eo, ) E << C;/¢; gives CIE,
1

Combining these two relations gives: (

* Photoionized plasmas are ‘“‘overionized”: <Z> always larger than CIE plasma at same T,
e Accreting black holes, such as low-mass x-ray binaries (LMXB) have § > ~100
* Experiments being designed for NIF should be able to achieve values of E, relevant

to LMXBs, due to the very high values of x-ray flux likely to be possible
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The Rayleigh-Taylor (RT) instability affects ICF

capsule performance and supernova explosion dynamics

Ablation front, surface
perturbation growth due to

Rayleigh-Taylor (RT) instability Stagnation RT growth in ICF Core-collapse supernova explosion

— 100 pm —

[Sakagami, PoFB
2,2715 (1990)]

Hachisu et al., Ap.J .Lett.
368,127 (1991)

* Laser ablation drives the ICF capsule implosion; nonuniformities imprint onto capsule surface
* These nonuniformities grow by the RT instability; feed through to inner surface

* Inner surface nonuniformities grow during deceleration and stagnation; degrade performance
* Turbulent RT growth in SN explosions mixes core material outwards, to be ejected
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SN1987A is a good example where hydrodynamic

instabilities are invoked to explain the observations

e Do reproduce SN1987A
SN1987A, a core-collapse, 1 - Do A\

blue supergiant supernova

1.6 x 101 cm
1.2x 102 cm

v “_ =1500S‘"
08x10%em . 6x10Mcm
e Do reproduce SN1987A

22 Feb. 2007, 20 yrs after explosion

* How are the heavy elements made
and ejected in SN explosions?

2x 1019 ¢cm
8 x1012 ¢cm

e Can these deep nonlinear, strong-shock
simulations be tested? Are they right?

< n

[Kifonidis, AA 408, 621 (2003): AA 453,661(2006)]  10Mem  3x102cm
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A practical example of “’Euler scaling” is a scale

transformation that leaves the Euler equations invariant

Example: force equation, neglecting viscosity and magnetic fields

N v-vi=-Lvp

at P
ov v 10
VvV, — = P, Assume 1D, and write force eq. for the star or SN
ot 0X P, OX,
Transform from the star or SN to the /ab:
25 2ov
dvf_i_av d ¢ 1 cop, X, = ax,
a4+, - Py
déot d ~ adx, bp, adx, p, =bp,
) P, = cp,
d°|adv, a odv, ¢ 1 dp,
2 T 5V == t. =dt
a|d adt, d° ~ox, ab p, 0x, s ¢
v X, ax, v
2 =S __"4t _
av, v, (d C)lape % Tdt, d
ot, 0x, a ab/p, 9Jx,
d2 I (azb)I/Z (b)l/z L* “\1/2
Want ——=1 So: d=|— =a| — Eu = P = invariant
a ab C C - (p*
b 1/2
Then setting | t, = (—) t, | leaves the Euler equations invariant under this transformation
¢ [Ryutov et al., Ap.J. 518,821 (1999)]
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Scaled, strong-shock, laser experiments have been developed

that reproduce the dynamics of the SN He-H interface

Seed perturbation
Au grid

Laser drive

Low-Z shock Shield
tube CH (4.3%Br)
p =1.42 g/cm?

Parameter SN1987A Lab experiment
L(cm) 9x1010 5.3x103
v(em/s) 2x107 1.3x10°
p(g/cm?) 7.5x1073 4.2
P(erg/cm?) 3.5x1013  6x101
Eu 0.29 0.34
Re 2.6x101° 1.9 x10¢
Pe 2.6x10° 1.8x103

Eu = v(p/P)V2 = (h/t)(p /P) ' = Euler number

1.2 mm

He-H vel (108 cm/s)

—
1

Omega expt. time scale (ns)
5 10 15 20 25 30 35

Fy

o
(o]
H

T —p—

T ———

I
~
o

— SN 1987A
experiment

Il
[$)]
o

3 N
(Suywm) [PA weo I-HD

|
[y
H

[Robey et al., PoP 8, 2446 (2001)]

o

05 1 15 2 25 3 35 4
SN 1987A time scale (103 s)

[Miles et al., PoP 12,056317 (2005); Kuranz et al., ApSS 298, 9 (2005); ApSS 307, 115 (2007)]
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One new class of astrophysics experiments planned for NIF will

look at modifications to the hydrodynamics due to strong radiation

Stellar birth

Eagle nebula,
distance ~ 2 kpc

[A. Mizuta, ApSS 298, 197 (2005);
D.D. Ryutov, ApSS 307, 173 (2007)]
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SNR shocks are collisionless; the ion-ion (Coulomb) collision

mean free path is much larger than the shock width

UT 415 keV ol

«

X-ray Image of SN1006, e)’( loded 1003 years ago

Mean-free-path, /., ~40 LY
Diameter of SNR, 30 LY

ShOCk Width, 0.1 LY: Kmfp/ fshk ~ 400

* How are collisionless shocks formed?
* How do collisionless shocks accelerate particles and generate cosmic rays?
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A new frontier in HED laboratory astrophysics is to use
relativistic plasmas to create an electron-positron “fireball”

Can scaled “fireballs” or jets of (e*, e’) pairs can be created using ultraintense
lasers to mimic aspects of gamma-ray burst (GRB) dynamics

Fireball model of gamma-ray bursts

FORMATION OF A GAMMA-RAY BURST could begin
either with the merger of two neutron stars or
T P with the collapse of a massive star. Both these
\ events create a black hole with a disk of material
NEUTRON STARS around it. The hole-disk system, in tume,‘rumfs
l : out a jet of material at close to the speed of light.
’-’ Shock waves within this material give off radiation. | JET COLLIDES WITH

AMBIENT MEDIUM

[external shock wave)
BLOBS COLLIDE GAMMA
[interinal shock R‘rs
i =1 : e -
BLACK HOLE DISK BLD L " &Ll

CENTRAL
ENGINE =

GAMMA-RAY EMISSION

AFTERGLOW

Relativistic collisionless shocks in GRBs

[Gehrels, Piro, Leonard, Sci. Am., 86-90 (Dec, 2002)]

 Can a relativistic collisionless shock be generated in the laboratory?
* Are relativistic shocks the source of the gamma rays in gamma-ray bursts?
* Are relativistic shocks the source of ultrahigh energy cosmic rays?
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Short pulse, high intensity lasers can generate
intense fluxes of relativistic electrons

_ Gekko-XII-PW at ~6.e18 W/cm?, Vulcan-PW at ~3.e20 W/cm?2,
) and 100 um thick Al target T e and a 25 um thick Cu foil.
Hlw-|()‘2 SR P B e R :&510
% 10" o | > 10" .
= 1010 N Signhal [Tanimoto etal., PoP = 100 [ Signal
T : 16, 062703 (2009)] = e Background
Q9 09 L O R . g 10
: 1 f =
s 1o : Background: § A %y ]
g 10’ }—-X ' Neid P ah PR - = 10 pa. N
S 100 | \ . E S 1080 /’N
£ ‘<« Maxwellian fit 3 5 Maxwellian fit = ]
LT, DU [, 0 SNSRI ERRIPR S D APl bl N
= 0 10 20 30 40 50 = 0 10 20 30 40 50
Energy (MeV) Energy (MeV)
NP . ~ 100
2 -E/T egree @ Vulcan
RelathIStl_C MaX\_Nelllan N(E) = N() E € % : S-40c:1ec;ree G'D\\,/ulcan‘::lvv
electron distribution: = o P-26 degree ®GXI PW
~ = = =Ponderomotive Scaling {\qe
8 —— f 0‘“0 -
- E 10 “ae{ ................. ”' .......... )
Ponderomotive scaling: T, m cz[\/ 1+ Ir 1] £ ¥
. hot = e 1 Ao 1018 4
14x10 =3
[S.C. Wilks, PRL 69, 1383 (1992); z /:.1'51'/
A. Pukhov, PoP 6, 2847 (1999)] < I g scaTS
g
1>
Beg scali T, (MeV) =~ 04(L2, ) " =i
. ~ 0.
eg scaling: hot 18Mum .11018 o 0 o0

[F.N. Beg et al., PoP 4, 447 (1997); Laser intensity (W/cm?)
Tanimoto et al., PoP 16, 062703 (2009)]
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Short pulse, high intensity lasers can also now
generate intense fluxes of relativistic positrons

Creating (e*, €) pairs in relativistic plasma

Trident
process

Bethe-Heitler
process, E, > 2mec?

Electrons and photons create pairs.

Number/MeV/sr

[J Electron-Gamma-Shower
Simulations

Energy (MeV)

Positron yield

IIII| T IIIIIII| T IIIIIII| T IIII| T
1013 /“‘4__“

Positron Rate (/kJ/ps )

Cooul Ll Ll Ll vl L

10° 10*® 10* 10® 10%
Laser Intensity(W/cm?)

0.081 @ Experiment
B EGS modeling
0.06+ — Analytic scaling .
0.04+ %
0.02
0

T T T T T T T T T T T | T T T T | T T T
0.0 0.5 1.0 15 2.0 25 3.0 35
Thickness (mm)

[Hui Chen et al., PoP 6, 122702 (2009);
PRL 102, 105001 (2009); PRL 105, 015003 (2010)]
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Scaling relations are being developed for this PW regime

E, A.U.
Assume that the electrons are ,ﬂ/ -, } .
(1) in the collisionless regime, and 4] Y z
(2) that their initial temperature is negligible compared %ﬂm ” I I I ! I ﬂ@b\}a
to the heating due to the PW laser deposition. w [ [ [ / W !
Then start with the Maxwell-Vlasov equations: N | L 2 "
of _ of (= 1. =\ of _ 1B _ 10E 4m-
—+V°T—e(E+—va)°T=O : VxE=——— |, VxB=—""—74+—j
ot or C ap c ot c ot C
V= P ll(cm_3)=ff-d3 '=—efv-f-d3 _ ¢k
V= (p2+m2c2)1/2 b e p ’ J p ’ p()_ »
Put in dimensionless form, then match the key dimensionless parameters:
1/2
Lo 4mtn ec ZeE
T = (") ) T ’ R = ’ S = —0 ’ U = 0
c E,0 Mwc

The number of ‘input’ parameters is 6: o,<, L, E;,, n,, M/Z . The number of
dimensionless parameters that needs to stay fixed is 4. So one can arbitrarily choose
2 of the parameters; the other 4 have to be set to keep T, R, S, and U fixed.

[D.D. Ryutov, PPCF 48, 1.23 (2006); Pukhov, PPCF 46, B13 (2004); Gordienko, PoP 12,043109 (2005)]
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Overarching questions of the universe can be addressed by combining

astronomical observations, simulations, and laboratory experiments

Gamma ray bursts

Supnernovae
.

Black holes
0

Planets
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