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The US Inertial Confinement Fusion program is studying

three main approaches.

Laser Indirect Drive Laser Direct Drive Magnetic Direct Drive
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All three major US ICF facilities provide critical data across

all the major approaches.

National Ignition Facility Omega Facility Z Facility

1.85 MJ 26 kJ
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3-D simulations are playing an increasing role in the

understanding of complex dynamics and error modes.

Laser Indirect Drive Laser Direct Drive Magnetic Direct Drive
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= QOverview of the major ICF approaches in the US program
= 3 major approaches and high-level results

= Common challenges under investigation

= Laser Plasma Interactions
=  CBET understanding and mitigation in Laser Direct Drive

= |mplosion and Stagnation - Morphology and Mix
= 3-D structure and diagnosis in Laser Indirect Drive and Magnetic Direct Drive

= Path forward
= National Program Goals
= Transformative Diagnostics
= Major planned efforts across each approach




ICF is about making a hot, dense plasma and holding it

together long enough to create significant fusion yields.
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ICF is about making a hot, dense plasma and holding it

together long enough to create significant fusion yields.

Symmetric Radiation Drive Laser Direct

Drive (LDD)

Laser Indirect
Drive (LID)

hohlraum

1.9 MJ on NIF 26 k) on OMEGA
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ICF is about making a hot, dense plasma and holding it

together long enough to create significant fusion yields.

High Convergence Implosion

Convergence Ratio (CR) ~20-35

Volume compression 8,000-35,000
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ICF is about making a hot, dense plasma and holding it

together long enough to create significant fusion yields.

Hot spot surrounded by cold fuel
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dense DT Hot DT

T>4keV
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ICF is about making a hot, dense plasma and holding it

together long enough to create significant fusion yields.
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LID implosions have produced significant yield with alpha

heating and continue to improve symmetry and efficiency.
Yield vs. Laser Energy on NIF
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LID implosions have produced significant yield with alpha

heating and continue to improve symmetry and efficiency.

Yield vs. Laser Energy on NIF
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LID implosions have produced significant yield with alpha

heating and continue to improve symmetry and efficiency.

Yield vs. Laser Energy on NIF
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LID implosions have produced significant yield with alpha

heating and continue to improve symmetry and efficiency.

Yield vs. Laser Energy on NIF
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LID implosions have produced significant yield with alpha

heating and continue to improve symmetry and efficiency.

Yield vs. Laser Energy on NIF
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Cryo-layered LDD implosions on OMEGA achieve pressures

> 50 Gbar, but deviate from 1-D simulations at low-adiabat

Stagnation Pressure vs. Fuel Adiabat

on OMEGA
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Cryo-layered LDD implosions on OMEGA achieve pressures

> 50 Gbar, but deviate from 1-D simulations at low-adiabat

Stagnation Pressure vs. Fuel Adiabat Hot-spot Imaging Neutron
on OMEGA 16-channel KB! Temporal History
' ! , N
’ )
__140 = ) 2
S 1-D LILAC Sims 5
g 120 > 5
’ (]
~ <% ’ 2
o 100 , W L
5 o> < |(/ 5] 28 30 32
» 80 < K Time (ns)
4 <>
=, ° ;i. * Scattered Laser Neutron
B > Spectrum Spectrum
@) +—Q v
o 40 Data 0’ . . 104 [| = Response Matrix Fit[™]
({) 20 L 2 - i . ) e Data MIT
B -a E 103 _
T o 1 g 2
2 a 6 E 3 102 | .
=
o = P/Pg S
N 5 7 9 11 13 15
| time Deutron energy (MeV)

Regan et al., PRL 117 (2016)



A better understanding of the 3-D implosion reveals the

limiting factors to achieving ignition-scale pressures in LDD

3-D ASTER simulations show effect
of errors in beam pointing, power
balance, and capsule placement
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Magnetic direct drive provides an alternative way to do

ICF using an axial B-field to reduce pr requirements

Magnetic Direct Drive (MDD) Imposing an axial B-field

6 mm | relaxes pr requirements
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The US is studying a form of magnetic direct drive called

Magnetized Liner Inertial Fusion (MagLIF).

Pre-Magnetize Preheat Compress

JVE B = APy

L
o
3
3
Beryllium liner
-« B,=10-30T - Laser Energy = 1-4 kJ « CR~35
- Inhibit e~ conduction « T,~100’s eV * pR~0.003 g/lcm?
 Confine o’s * Reduce required * P~5Gbar

implosion velocity _ * BR~0.5MG-cm

- — s

- Slutz et al., POP 17 (2010).




MagLIF experiments on Z have demonstrated the key

features of magnetized inertial fusion.

High Convergence Implosion
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MagLIF experiments on Z have demonstrated the key

features of magnetized inertial fusion.
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MagLIF experiments on Z have demonstrated the key

features of magnetized inertial fusion.
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MagLIF experiments on Z have demonstrated the key

features of magnetized inertial fusion.
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Present US facilities drive the three major ICF approaches

at much different spatial and energy scales

Laser Indirect Drive Laser Direct Drive - MagLIF
On NIF ' On OMEGA OnZ
1 mm
<>
Edriver ~1.8MJ Edriver ~ 26 kJ Edriver ~2 MJ
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Despite the differences in the approaches, there are many

common challenges being addressed by the US program.

Laser Plasma Interactions Implosion & Stagnation Physics
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Controlling (or avoiding) laser plasma instabilities is key to

the future success of most ICF approaches.

Laser Indirect Drive Laser Direct Drive Magnetic Direct Drive

Beam 2
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In LDD, crossed-beam energy transfer (CBET) reduces the

drive pressure and resulting hot-spot conditions.

_ Measured/Simulated Scattered
CBET reduces the ablation pressure

Light Power
by transferring laser energy from incoming
rays to outgoing rays Measured
CBET model
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CBET mitigation is being studied in

the spatial and spectral domain

Spatial Domain Spectral Domain

Beam 2 :
Change color of adjacent beams
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beam
overlap
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Proof-of-principle LDD experiments have demonstrated

CBET mitigation with wavelength detuning on the NIF.

Detuning changes the Detuning increases the
implosion shape measured implosion velocity
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There are also common challenges in achieving a

predictable and controlled implosion and stagnation.

Engineering Features

LID

3-D Morphology
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Non-ideal target features can lead to a complex stagnation

that impacts conditions and confinement.

Capsule ‘Tent’ Fill Tube

capsule

In-Flight Radiograph

X-ray Imaging
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HDC implosions in LID are less sensitive to the ‘tent’, and

evidence of the fill tube is now more pronounced.

MacPhee - Wed. 8:30
X-ray movies from HDC implosions
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New measurements using penumbral apertures

dramatically improve the view of the hot-spot structure

Multi-LOS 3-D Reconstruction
Patel — Wed. 11:00

Pinhole Image Penumbral Image
(6x~14um)
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Orthogonal neutron imaging on NIF provides new

information on the 3-D asymmetry of the fusing fuel.
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A new methodology for interpreting neutron yield asymmetry

provides information on the 3-D evolution of LID implosions

Neutron Yield Asymmetry Data

Analytic Model of Dynamic Shell Evolution
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In MaglLIF, the applied B-field induces 3-D liner features

that imprint on the stagnation column at CR > 40.

Backlit Radiographs X-ray Self Emission
B,=7T B,=15T No B,

No B

Helmholtz Coil Provides
Axial Magnetic Field (B,)

« Thermal insulation
« Trap fusion particles

° T.J.Aweetal., PRL111, (2013).



New high resolution diagnostics are providing important

insight into the MagLIF stagnation morphology and mix

2-D Monochromatic Imaging 1-D Imaging Spectroscopy

[=J r— _7‘ | Cobalt from window

Iron from Be Liner

(6x~16um)

Iron spectrum

Red = data Fe He,
Black = PrismSPECT fit

Li-like sats.




Dielectric liner coatings improve the stagnation shape but

require a thinner liner to recover performance

Electrothermal Instability RIAR ~ 6 R/IAR ~ 6 R/AR ~ 9
can be mitigated using No coating w/ coating w/ coating

epoxy coatings

Ampleford
— Wed. 11:00

No Coating
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= Path forward

= National Program Goals

= Transformative Diagnostics
= Major planned efforts across each approach




US National Program Goal: Determine the
efficacy of reaching ignition on the NIF and of

The goal of the US ICF program is

to achieve multi-M!J fusion yields.

VA =3 DOE/NA-0044

205.6 Inertial Confinement Fusion
Program Framework
4

< Ten-Year High Energy-Density Science Strategic Plan

achieving credible physics scaling to multi- < oty reseoreh ections o
o . o . <~ National Diagnostics Plan
megajoule fusion yields for each of the three major = =

ICF approaches

Organized around four framework elements:

am

10-year strategic plan for High Energy Density
Science

Integrated Experimental Campaigns
Priority Research Directions (focused science)

Transformative Diagnostics

Search ‘ICF Framework NNSA’ on Google




A US National effort to develop transformative diagnostics will

provide new capability for assessing the details of ICF plasmas

Transformative New capability SLOS (new inv‘f"ti°_r')
Diagnostic 3 | -
Single LOS (SLOS) Imaging and spectroscopy with <20 ps temporal
imager resolution along a single line-of-sight

UV Optical Thomson Localized plasma conditions and turbulence in

Scattering hohlraums
3D n/y imaging 3D shape of burning and cold compressed fuel
Density of compressed DT
Gamma Spectroscopy | Fusion burn history and shell rho-r from neutron image
Time resolved n Time evolution of the fusion burn temperature
spectrum
High Resolution X-ray | Time evolution of electron density,
Spectroscopy temperature, and mix in the hot fuel 5

Diagnostics | — Wed. 11 AM — Sangster, Chen, Hilsabeck, Herrmann
Diagnostics Il — Thurs. 4:30 PM — Bradley
Diagnostics Il — Fri. 1:30 PM — Ross




LID efforts will focus on improving implosion quality and

assessing if additional energy is needed for MJ yields

HDC Implosion Data
Can ignition be achieved on NIF?

—improving implosion “quality” by
using better measurements and models
B to identify degradation mechanisms
| A ,,,,,, ] and finding ways to remove or work

: o : around them

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

If not, what is the credible scaling to
ignition

Neutron Yield

—determining how much more
“energy/power” is needed, through
extrapolation from measured
performance using experimentally
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LDD efforts will follow the National Direct Drive Program

plans to demonstrate a credible scaling to ignition

lgnition Pressure vs. Hot Spot Energy

500 f

Clurrent le |

400 -

Required: 140 Gbar
Achieved: 567 Gbar

(%

o

o
1

P (Gbar)
N
o
o

100

/ Mitigated CBET

Energy-scaled current OMEGA (E;, = 0.4 kJ)

0 20 40 60 80
Hot-spot energy Eyg (kJ)

.\\l.

|
100

100 Gbar Campaign on OMEGA

* Demonstrate 80-100 Gbar in ignition-
scaled designs on OMEGA
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MJ Direct Drive Campaign on NIF

* Demonstrate understanding and
control of LPI at the 1.8 MJ scale
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e Test understanding in low-
convergence implosions
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* V.N. Goncharov et al., PPCF 59, (2017).



MagLIF efforts are focused on improved performance at

lower convergence by increasing capability in each phase.

Implosion & Stagnation Laser Preheat Power Flow
* Decrease CR to ~35 for a » Develop methods and * Develop platforms and
less structured and more validated models for more validated models for more
repeatable stagnation. efficient laser preheat. efficient power flow

compatible with High B,

w_

» Achieve >10 kJ DT vyield on _ _
7 with T > 4 keV and » Achieve >2 kJ preheat w/ * Achieve >20 MA peak
BR > 0.5 MG-cm minimal laser-induced mix currentw/ B,~ 25T

NISA



The US Inertial Confinement Fusion program is studying

three main approaches.

Laser Indirect Drive Laser Direct Drive Magnetic Direct Drive
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