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* [ntroduction to dense plasma focus (DPF)

= Neutron generation physics

= PIC modeling & benchmarks to measurements

= Simulation movies and restrikes

= Two ways current is diverted from pinch location:
= Restrikes in plasma
= Arcing behind gun

= Trends in the simulations—> reduced order model

= Using the model to improve experiments

= Next questions to answer
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Dense Plasma Focus: A coaxial plasma railgun

The “Mather” DPF: an open ended coaxial gun
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DPFs make

» energetic (keV to MeV) beams
* X-rays

« neutrons (for D or DT gas)
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DPFs can be sized for relevant yield
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MegalOulLe Neutron Imaging Radiography
(MJOLNIR) design & build team

Now: 1 MJ/2.7 MA
Upgrade: 2 MJ/4+ MA
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Stages of a DPF discharge

Stages of a DPF

discharge
1) insulator
flashover

Fill gas 2) run-down
3) run-in

4) pinch
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Stages of a DPF discharge

‘ Stages of a DPF
discharge

1) insulator
flashover

2) run-down
3) run-in
4) pinch
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Stages of a DPF discharge

Magnetic field fills volume

where gas has been swept up @ Stages of a DPF
discharge

1) insulator
flashover

2) run-down
3) run-in
4) pinch
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Stages of a DPF discharge

Stages of a DPF
discharge

1) insulator
flashover

2) run-down
3) run-in
4) pinch
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Physics of neutron generation during z-pinch
phase (according to 2D PIC simulations)
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Physics of neutron generation during z-pinch
phase (according to 2D PIC simulations)

Yield = beeamntargetLtarget f(E)G(E)dE Nl = number

n = number density
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Delay:6.147us
Exposure : 3ns




Kinetic (particle) code captures anomalous
resistivity and beam formation in plasmas

Fluid picture: each “pixel” is a
fluid element with a density,
temperature, and velocity

Kinetic model needed to get correct
neutron yields in dense plasma focus (DPF)

Kinetic (8.6 x 106 ) /Brees with
eXperlment

Hybrid 3.6 x 10%

Fluid 0

A. Schmidt, V. Tang, D. Welch, PRL 2012
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Kinetic picture: each “pixel” is a collection of particles;
density, internal energy, and velocity are derived from
collection

= Each “pixel” in the pinch region is really
1,000-10,000 particles

= 100-500 million particles per simulation

= \We resolve electron cyclotron motion
(~femtosecond time-steps)

= ~1 million time steps
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Details of LLNL PIC modeling

Simulations are performed in two coupled stages:
1.  Single Fluid with MHD which establish the initial conditions and circuit dynamics
2.  Kinetic PIC with Full Maxwell’s equations starting 10-20 ns prior to the pinch phase

Distribution Function in the Sheath

Fluid to Kinetic Transition
. Maps Local plasma distribution
function to a drifting Maxwellian of £?2
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2.  Plasma Conditions ° ¥ toni " Yo e T
Note: A typical 3 Resolution Circuit Driver |
MA simulation AX,Az = 100—400 um Full ngwell_ Equations
takes 60-120 At=0.25-250fs Implicit Particle advance

: Physics Models « Direct Implicit Scheme

days of \_N_a” time Collisions  Full Matrix Inversion for Field Advance
A few million « D-D/T Fusion packages «  Currently resolving o, across most of the
CpuHrs simulation
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How a Dense Plasma Focus produces Neutrons
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Beam Target dominates the total yield over thermonuclear
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Model agrees within a factor of 2 with
experimental yields

Data taken from Gemini experiment (Nevada)
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Similar scaling to Experiment but at half the coefficient
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Near/far nToF agreement indicates that simulated
pulse shape/neutron energies are reasonable
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Example of a 200 kA fluid-to-kinetic simulation
including restrikes
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Particles accelerated across the gap to >1 MeV
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DPFs show variable measured yields and kinetic
simulations reproduce variability/stochasticity

Neutron yield per unit length (neutron-cm'1)
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Challenge: Find ways to increase average yield and simultaneously improve

shot-to-shot consistency
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High-yield pinches always exhibit
strong m=0 instability in simulations
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Electric field sets up in the gap between
two separated blobs of plasma
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Beam forms on axis when electric field sets

beam creation
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In a low yield simulation, a full m=0 never sets
up, possibly due to restrike currents
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Similar to restrikes, current arcing behind the
gun diverts current from pinch

= Mystery: why wasn’t LLNL mini
DPF producing expected yields?

= Hypothesis: current is flowing
behind the gun
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Arcing behind the gun can introduce significant
reduction in neutron yield
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The earlier the arcing, the worse the yield
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Simulations indicate that anode-to-sheath
restriking is common
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Trailing mass left behind by hydrodynamic instabilities create lower-inductance
current pathways that divert current from the pinch region

Lawrence Livermore National Laboratory \/ Jo8 28
A

LLNL-PRES-790757 National Nuclear Security Adr




Hollow anode mitigates anode-to-sheath
restrikes
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Lower yield shots show evidence of parasitic
current diversion from pinch region
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Lower yield shots show evidence of parasitic
current diversion from pinch region
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Insights from PIC modeling to be applied to
lower order model

= Beam temperature for a given DPF current doesn’t change much
= For a given stored energy class of DPFs, conversion efficiency of gun energy
to beam energy is somewhat constant
- Main influence on yield is through aerial density and temperature of target
= Large radius anode/long implosion time leads to hydrodynamic instabilities that
appear early in run-in
= \We can mitigate these hydro instabilities with a tapered anode, where the
taper stops at a particular radius. Mass is swept up starting from the
radius where the taper stops (the “implosion radius™).
= Plasma target needs to be hot to minimize stopping power (increases aerial
density average cross-section)
= Too much mass in the implosion (high gas fill or large implosion radius)
can cause target to be cold
A hollow anode can help mitigate anode-to-sheath restrikes

From analytic shock physics: maximum achievable convergence ratio appears to
be about 10 in a shock-driven cylindrical implosion
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With a few assumptions, we can make a reduced
order model to explore wide parameter space

By

Beam

n = number density

Yield = ijeamntargetLtarget f(E)G(E)dE N = number

Simple Model:
» Assume the hydrodynamic disassembly time of the “target” >> duration of
lon beam and acceleration time of ion beam

* Assume beam can’t miss the target, i.e. partially magnetized
» Getting to sufficient areal density will probably mostly guarantee this
« Larmor Radius for 1 MeV D* near the pinch is about 0.5-1 mm

« Useful pinch length is = 2 cm long —E

« Beam spectrum is decaying exponential f (E ) =€ / E,
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Anode design evolution influenced by both
kinetic and reduced order models
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Example of how modeling insights helped
improve anode design

i 3.0E+11
® 3" hollow anode

2.5E+11 ®
_ @ 0.7" hollow
2.0E+11
» First anode fielded on
MJOLNIR was S 1.5E+11
unsuccessful at high >~
current 1.0E+11 0
= Modeling gave us P
insight that plasma O ¢
target was not getting 5.0E+10 ¢
hot enough
= We reduced the hollow 0.0E+00
radius and recovered 25 30 35 40 45 50
performance at high Charge voltage +/- [kV]
currents
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Example of how modeling insights helped
improve anode design

h Yields from first 2 anodes on MJOLNIR

3.00E+11

@ 3" hollow low
o - current
2.50E+11 @ 3" hollow high
T current
= First anode fielded on 2 00E+11 0.7" hollow low
MJOLNIR was © | _  curent
unsuccessful at high = O ®0.7" hollow
9 2 1.50E+11 high current
current @
= Modeling gave us L 00E+11 [ B P
insight that plasma 1 o
target was not getting & 00E+10 + O
hot enough ' + é ; ¢
= We reduced the hollow 0 * o
: 0.00E+00
radius and recovered 0 5 10 15 20 o5 30
performance at high Pressure (torr)

currents

‘ Lawrence Livermore National Laboratory INVSE 36

LLNL-PRES-790757 National Nuclear Security Administration




Key future questions

* |[n MJOLNIR, where do restrikes occur?
» At base of DPF/insulator
" In A-K gap
* From anode-to-sheath
= How do we avoid restrikes?
= Operating pressure
= Could be problematic since high pressure is needed
for high yields
* Increase A-K gap
* |[ncreases head inductance, lowers peak current —
what is effect on pinch current?
= Anode shape
= What limits performance at higher pressures?
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