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Outline

▪ Introduction to dense plasma focus (DPF)

▪ Neutron generation physics

▪ PIC modeling & benchmarks to measurements

▪ Simulation movies and restrikes

▪ Two ways current is diverted from pinch location:

▪ Restrikes in plasma

▪ Arcing behind gun

▪ Trends in the simulations→ reduced order model

▪ Using the model to improve experiments

▪ Next questions to answer
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The “Mather” DPF: an open ended coaxial gun

DPFs make

• energetic (keV to MeV) beams

• x-rays

• neutrons (for D or DT gas)

LLNL DPF

Cathode

Anode
Insulator

Dense Plasma Focus: A coaxial plasma railgun
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Yield

(DD)

Anode

length 

(cm)

1e5-1e6 1e7 1e11-1e12

5

10

30

Accelerator-based 

AmBe replacement

Portable active 

interrogation

90 kA

200 kA

2-3+ MA

DPFs can be sized for relevant yield

Potential: survivability, 

neutron imaging
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MegaJOuLe Neutron Imaging Radiography 
(MJOLNIR) design & build team

Now: 1 MJ/2.7 MA

Upgrade: 2 MJ/4+ MA
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Stages of a DPF 

discharge

1) insulator 

flashover

2) run-down

3) run-in

4) pinch

Anode

Anode

Cathode

Insulator

Fill gas

Stages of a DPF discharge
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Anode

Anode

Insulator

Stages of a DPF 

discharge

1) insulator 

flashover

2) run-down

3) run-in

4) pinch

Stages of a DPF discharge
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Anode

Anode

Insulator

Stages of a DPF 

discharge

1) insulator 

flashover

2) run-down

3) run-in

4) pinch

Stages of a DPF discharge

Magnetic field fills volume 

where gas has been swept up
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Anode

Anode

Insulator

Stages of a DPF 

discharge

1) insulator 

flashover

2) run-down

3) run-in

4) pinch

Stages of a DPF discharge
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Physics of neutron generation during z-pinch 
phase (according to 2D PIC simulations)

Bq

I
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Ez

Bq

Beam

𝑌𝑖𝑒𝑙𝑑 = න𝑁𝑏𝑒𝑎𝑚𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝐿𝑡𝑎𝑟𝑔𝑒𝑡 f E σ 𝐸 𝑑𝐸

Target

I

N = number

n = number density

Physics of neutron generation during z-pinch 
phase (according to 2D PIC simulations)
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Kinetic (particle) code captures anomalous 
resistivity and beam formation in plasmas

A. Schmidt,  V. Tang,  D. Welch,  PRL 2012

Kinetic 8.6 × 106

Hybrid 3.6 × 104

Fluid 0

Kinetic model needed to get correct 
neutron yields in dense plasma focus (DPF)
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Fluid picture: each “pixel” is a 
fluid element with a density, 

temperature, and velocity
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Kinetic picture: each “pixel” is a collection of particles; 
density, internal energy, and velocity are derived from 

collection

Agrees with 
experiment

▪ Each “pixel” in the pinch region is really 

1,000-10,000 particles

▪ 100-500 million particles per simulation

▪ We resolve electron cyclotron motion                

(~femtosecond time-steps)

▪ ~1 million time steps
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Details of LLNL PIC modeling

Fluid to Kinetic Transition

• Maps Local plasma distribution 

function to a drifting Maxwellian of 

kinetic particles

• Preserve during transition

1. Currents and Fields

2. Plasma Conditions

Simulations are performed in two coupled stages:

1. Single Fluid with MHD which establish the initial conditions and circuit dynamics

2. Kinetic PIC with Full Maxwell’s equations starting 10-20 ns prior to the pinch phase
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Fluid Before Transition

Kinetic After Transition

Ti ≈ 800 eV

Ni ≈ 5x Ambient

Resolution

Dx,Dz = 100-400 mm

Dt = 0.25-250 fs

Physics Models

• Collisions

• D-D/T Fusion packages

Circuit Driver

Full Maxwell Equations

Implicit Particle advance

• Direct Implicit Scheme

• Full Matrix Inversion for Field Advance

• Currently resolving wc across most of the 

simulation

Note: A typical 3 

MA simulation 

takes 60-120 

days of wall time

A few million 

cpuHrs
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How a Dense Plasma Focus produces Neutrons

Beam Target dominates the total yield over thermonuclear

Dense D+
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Model agrees within a factor of 2 with 
experimental yields
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We have typically observed 

overall fairly good agreement 

but typical under predict the 

yield by roughly a factor of 2x 

for higher current MJ DPF 

shots

Similar scaling to Experiment but at half the coefficient
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Data taken from Gemini experiment (Nevada)
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Particle Model

5/16/2013 Shot 13 data

Pulse shape agreement

Down-scattered 

neutrons (not in model) 
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We get time 

offset?

Near/far nToF agreement indicates that simulated 
pulse shape/neutron energies are reasonable
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Example of a 200 kA fluid-to-kinetic simulation 
including restrikes
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Particles accelerated across the gap to >1 MeV
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DPFs show variable measured yields and kinetic 
simulations reproduce variability/stochasticity

Bures, Physics of 
Plasmas, 19, 
112702 (2012)
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Vary driver impedance

Challenge: Find ways to increase average yield and simultaneously improve 

shot-to-shot consistency
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High-yield pinches always exhibit 
strong m=0 instability in simulations

zoom region 

4mm x 4mm

H
ig

h
-y

ie
ld

 p
in

c
h

ion density
log(cm-3)

rBθ
Amps



LLNL-PRES-790757

22

Electric field sets up in the gap between 
two separated blobs of plasma
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Beam forms on axis when electric field sets 
up there
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In a low yield simulation, a full m=0 never sets 
up, possibly due to restrike currents
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Similar to restrikes, current arcing behind the 
gun diverts current from pinch

Rb

Lb

Cb

RDPF

LDPF

Rs

Cb 400 nF

Lb 50.3 nH

Rb 80 mW

Vs 80 kV

Rs 1 mW – 1 kW

LDPF 4.5 nH

We can add a 

parasitic current 

path in the 

simulation behind 

the gun to simulate 

arcing behind the 

gunLLNL mini DPF

▪ Mystery: why wasn’t LLNL mini 

DPF producing expected yields?

▪ Hypothesis: current is flowing 

behind the gun
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Arcing behind the gun can introduce significant 
reduction in neutron yield

Case Trigger 

Voltage [kV]

Yield (106

Neutrons)

restrike 80 .02

no restrike 8000 0.9
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The earlier the arcing, the worse the yield
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Simulations indicate that anode-to-sheath 
restriking is common

Trailing mass left behind by hydrodynamic instabilities create lower-inductance 

current pathways that divert current from the pinch region

Density rBθ
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Hollow anode mitigates anode-to-sheath 
restrikes
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Lower yield shots show evidence of parasitic 
current diversion from pinch region
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Lower yield shots show evidence of parasitic 
current diversion from pinch region

Time (µs)
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u
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Vary resistance of a 5 nH

current path (represents 

restrike near the insulator) 

to match low yield shot 

current trace in snow-plow 

model

Ideal: measure location of restrike 

with b-dot or other probe
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Insights from PIC modeling to be applied to 
lower order model

▪ Beam temperature for a given DPF current doesn’t change much

▪ For a given stored energy class of DPFs, conversion efficiency of gun energy 

to beam energy is somewhat constant

→ Main influence on yield is through aerial density and temperature of target

▪ Large radius anode/long implosion time leads to hydrodynamic instabilities that 

appear early in run-in

▪ We can mitigate these hydro instabilities with a tapered anode, where the 

taper stops at a particular radius. Mass is swept up starting from the 

radius where the taper stops (the “implosion radius”).

▪ Plasma target needs to be hot to minimize stopping power (increases aerial 

density average cross-section)

▪ Too much mass in the implosion (high gas fill or large implosion radius) 

can cause target to be cold

▪ A hollow anode can help mitigate anode-to-sheath restrikes

From analytic shock physics: maximum achievable convergence ratio appears to 

be about 10 in a shock-driven cylindrical implosion
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Ez

Bq

Beam

𝑌𝑖𝑒𝑙𝑑 = න𝑁𝑏𝑒𝑎𝑚𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝐿𝑡𝑎𝑟𝑔𝑒𝑡 f E σ 𝐸 𝑑𝐸

Simple Model:

• Assume the hydrodynamic disassembly time of the “target” >> duration of 

ion beam and acceleration time of ion beam

• Assume beam can’t miss the target, i.e. partially magnetized

• Getting to sufficient areal density will probably mostly guarantee this

• Larmor Radius for 1 MeV D+ near the pinch is about 0.5-1 mm

• Useful pinch length is ≈ 2 cm long

• Beam spectrum is decaying exponential 

Target

I

N = number

n = number density

𝑓 𝐸 = 𝑒 ൗ−𝐸
𝐸
𝑏

With a few assumptions, we can make a reduced 
order model to explore wide parameter space
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Anode design evolution influenced by both 
kinetic and reduced order models

Reduce anode-to-

sheath restrikes

Hollow anode

Delay 

hydrodynamic 

instabilities

Tapered 

anode

Hotter 

plasma 

target

Smaller 

radius 

hollow
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Example of how modeling insights helped 
improve anode design

▪ First anode fielded on 

MJOLNIR was 

unsuccessful at high 

current

▪ Modeling gave us 

insight that plasma 

target was not getting 

hot enough

▪ We reduced the hollow 

radius and recovered 

performance at high 

currents
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Example of how modeling insights helped 
improve anode design

▪ First anode fielded on 

MJOLNIR was 

unsuccessful at high 

current

▪ Modeling gave us 

insight that plasma 

target was not getting 

hot enough

▪ We reduced the hollow 

radius and recovered 

performance at high 

currents
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Key future questions

▪ In MJOLNIR, where do restrikes occur?

▪ At base of DPF/insulator

▪ In A-K gap

▪ From anode-to-sheath

▪ How do we avoid restrikes?

▪ Operating pressure

▪ Could be problematic since high pressure is needed 

for high yields

▪ Increase A-K gap

▪ Increases head inductance, lowers peak current –

what is effect on pinch current?

▪ Anode shape

▪ What limits performance at higher pressures?




