Compact Approach to Fusion Energy with
the Sheared Flow Stabilized Z-Pinch

Uri Shumlak

Aerospace & Energetics Research Program
University of Washington, Seattle

Michigan Institute for Plasma Science and Engineering (MIPSE)
University of Michigan

16 September 2015

UNIVERSITY of ) ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program

Uri Shumlak, shumlak@uw.edu



ZaP Personnel

Graduate Students
Elliot Claveau
Michal Hughes
Lorcan McGonigle
Michael Ross
Jonathan Weed

Undergraduate Students

Shawn Doty
Eleanor Forbes
Bonghan Kim
Leanne Su
Ryan Townsend

Faculty
Brian A. Nelson (Co-Pl)

Uri Shumlak (P1)

Staff
Raymond Golingo
Dzung Tran

Collaborators

Daniel Den Hartog (U Wisc)
Charles Hartman (LLNL)
Harry McLean (LLNL)
Andrea Schmidt (LLNL)

UNIVERSITY of

WASHINGTON Aerospace & Energetics Research Program

ZaP Flow Z-Pinch

Uri Shumlak, shumlak@uw.edu



University of Washington Plasma Group
7 faculty, 6 staff, approx. 20 graduate students

experimental & computational research in plasma
dynamics, fusion energy, and advanced space propulsion

Computational Plasma Dynamics — develop high-fidelity
physics models and novel numerical solution algorithms

Helicity Injection Current Drive — self-organized spheromak configurations

Laboratory Astrophysics — form helical
plasma jets to study interaction between
plasma flows and helical magnetic fields
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Presentation Outline

e Promise and challenge of nuclear fusion energy: why is it so
difficult, so expensive, and so far away?

e Rethinking plasma stability by replacing magnetic shear with flow
shear

e Sheared flow stabilization applied to the Z-pinch — theoretical
findings and experimental investigation

e Experimental data showing low MHD mode activity coincident with
sheared plasma flow in ZaP device

e Improved performance on next generation ZaP-HD device showing
higher energy density and consistent stability behavior.

e Sheared flow stabilized Z-pinch scaling relations show a path to
HEDP and fusion conditions. Motivates new project, FUZE.

e Other applications include EUV lithography
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Fusion is the ultimate energy source, but control is hard

Energy availability elevates developing countries. As
standards of Ilvmg Improve, energy production and . =

have drawbacks:
— Fossil fuels are being depleted; greenhouse gases
— Nuclear fission has disposal concerns; public anxiety

— Hydro & solar power can have negative
environmental impacts and are limited by power
output and location possibilities

None are applicable for human exploration of deep

space.
Nuclear fusion reactions release a tremendous amount of energy with
a fuel supply that could last 5 million years. peuterum Helium
(@ +@
e+
°D+3 T —5 He+yn+17.6 MeV \&/
Developing controlled fusion energy has proven to . ' \X\Enw
be much harder than originally imagined. NG
Tritium eutron
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Fusion is the ultimate energy source, but control is hard

Developing controlled thermonuclear fusion energy is difficult.

— Positively-charged nuclei must approach close distances overcoming
electrostatic repulsion until the nuclear strong force engages

— Nuclei must be heated to high energies, insulated from cold structural
materials, and confined while fusing collisions occur

nt>3x10?° s/m® at T =15 keV (= 150,000,000 C)

Some of the best results have been achieved
In tokamaks — massive devices with
relatively low plasma energy density.

e Efficiency drives to smaller,
compact designs.

e Plasma stability requires large
magnetic fields. (static plasmas)

Rethink plasma stability with a
search for compact configurations.
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Z-pinch offers a simple configuration for fusion energy

The Z-pinch equilibrium (no applied axial fields) is described by

B, d(rB(,)+ o _q
w,r dar dr

Increasing the current and the resulting azimuthal magnetic field
compresses the plasma to fusion conditions in a compact
device — no magnetic field coils. However, the equilibrium is
classically unstable to m = 0 sausage and m = 1 kink modes.

' t
'

Crushed
lightning rod.t

: :

v

Stability can be restored by limiting the pressure gradient?,
introducing an axial magnetic field?, or installing a close-fitting
conducting wall4.

These approaches are incompatible with a compact fusion device.

UNIVERSITY of 1Pollock & Barraclough, PRS (1905); 2Kadomtsev, RPP (1966);
WASHINGTON 3Kruskal et al., PRS (1954); Shafranov, SJAE (1956); “Knecht et al. IEEE TPS (2014)



The Z-pinch can be stabilized with a sheared flow.

Plasma flow destroys the convenient Hermitian quadratic form that
results from the energy principle stability analysis.

oW = —Jg* 'F(§)+?inPo§* I\ V)éj = —wszog* S

| _ | Flow
Solving a more complicated linear 0.12
stability analysis for a marginally .
stable Kadomtsev equilibrium,? |
dlnp B 47 > - Stable
dinr 2+y8 S
In the no-wall limit, the Z-pinch is on
stabilized with a sheared flow,?
dV 0'00_1 2 3 4 5
dz =v, >0.1kV,.
r

The sheared flow stabilization effect
IS a phase mixing at different radii
In the pinch.

UNIVERSITY of
WASHINGTON lKadomtsev, RPP (1966); 2Shumlak & Hartman, PRL (1995)




Schematic illustrates flow Z-pinch formation
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Neutral gas is injected through puff

____________ t, valves into the annulus of a coaxial

plasma accelerator.

Neutral gas expands before a

____________ t, capacitor bank is discharged

across the electrodes.

The plasma accelerates down the
coaxial accelerator due to
generated currents and magnetic
fields.
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Schematic illustrates flow Z-pinch formation
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The plasma continues down the
t, accelerator in a snow-plow manner.

At the end of the accelerator the
t: plasma assembles into a Z-pinch
configuration.

Inertia and gun currents maintain
the plasma flow and supply until

the accelerator plasma empties or
the capacitor current vanishes.

ZaP Flow Z-Pinch
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The ZaP Flow Z-Pinch Experiment

The ZaP Flow Z-Pinch experiment investigates the concept of using
flows to stabilize an otherwise unstable plasma configuration.

Acceleration Region

Va

A\

Assembly Region
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Neutral Gas
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Inner Electrode Outer Electrode Vacuum Vessel
|
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Diagnostics measure plasma flow and stability

The ZaP diagnostics measure equilibrium plasma parameters, plasma

UNIVERSITY of

flow, and magnetic mode activity (stability).

Surface-mounted magnetic field probes \ Analyze magnetic fields,
magnetic fluctuations, and plasma stability?

Fast framing camera with optical filters \ Qualitative measure of plasma
structure

Four-chord HeNe interferometer \ Measure plasma density profile2

0.5 m imaging spectrometer with 20 input chords and an intensified

CCD detector \ Doppler shift for plasma flow profile,X Doppler broadening for
ion temperature, Zeeman splitting for magnetic fields,® Stark broadening for
density*

Thomson scattering system using ruby laser & Hibshman spectrometer
\ Measure electron temperature

Digital holographic interferometer \ Measure two-dimensional plasma

density structure
1Shumlak et al., PoP (2003), Golingo et al., PoP (2005); 2Jackson & Shumlak, RSI (2006);

WASHINGTON 3Golingo et al., RSI (2010); “Vogman & Shumlak, RSI (2011)



Magnetic fluctuations diminish after pinch forms

Fluctuations of the magnetic modes are significantly reduced for = 37 s
after pinch forms. Mode activity increases again after this quiescent
period. Experimental data suggests the quiescent length is limited by
plasma supplied from the accelerator.
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Optical images show a stationary plasma pinch

Visible emission images are obtained of the pinch, every 200 ns,
through a 5 cm hole with an Imacon fast-framing camera.

Images show a stationary plasma pinch during the quiescent period.
Note hollow structure.

= e e

Pulse 40115035

Time
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Optical images show a stationary plasma pinch

Visible emission images are obtained of the pinch, every 200 ns,
through a 5 cm hole with an Imacon fast-framing camera.

Images show a stationary plasma pinch during the quiescent period.
Note hollow structure.

Pulse 40115035

Time

Gross kink & sausage instabilities appear at the end of the quiescent

period.
Pulse 40127041
UNIVERSITY of _ ZaP Flow Z-Pinch
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Multichord spectrometer provides velocity profiles

A 20-chord imaging spectrometer is connected to an intensified CCD
detector to measure the Doppler shifts of impurity emission lines.

The chords are spaced out of plane in the drawing below.
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Large flow velocity exists during the quiescent period?

Large Doppler blue-shift of the C-IlI impurity line (229.7 nm) during the
guiescent period.

3! |
.........

UNIVERSITY of
WASHINGTON 1Shumlak, Golingo, Nelson, & Den Hartog, PRL (2001)



Flow velocity decreases at end of the gquiescent period

Small Doppler shift of the C-III impurity line (229.7 nm) at the end of
the quiescent period.

20
10
22 Apiat 229.4 . 2z & S
A ath (nm)
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Flow profile is correlated to plasma stabllity

20 -
: . 2205 During initial plasma assembly
15 LDE+ . .
: % so10d (t < 0), the axial plasma velocity
i B ; ?.DE:04 . . .
7 e IS high and uniform.
3 P St v, = 0-4x 106 s
—_ w = 1.0E+04
E oL Y 'él £ 0.0E+00
= 8 'é 5800 Torr
-5 [ ‘%/
. Al
-10 L 4
15 é 'i :
P
el : : 5800 Torr
| |
0.8 - | L
| |
| |
| |
o 0.6 [ |
of | |
D 04 i :
. | |
g |
0.2 - ' ) P e
1 , I » . .'? -’! 5 ' : » ': .'.
0.0 ! } . ! a_;r * :f e 'c-I '
-05 0.0 0.5 1.0 15
T
UNIVERSITY of _ ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program Uri Shumlak. shumlak@uw.edu



r (mm)

B,/B,

Flow profile is correlated to plasma stabllity
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Flow profile is correlated to plasma stabllity

20

15

10

Plasma assembly (t < 0), the axial
plasma velocity is high and
uniform. (v, " = 0-4 X 10 s°1)

Start of quiescent period (t = 0),

- o ',‘
.il

SRACEAN

"-[Q-"\_

ok ':‘%1 SV the velocity profile is high at the
14 »7 ;'I " plasma edge and lower at the
Sr > ' ‘ . '~ 7. 6 -1
M X ﬁ?‘ axis. (v, = 7-12x10° s)
* s At the end of quiescent period
0 i - ——— (t = 1), the plasma velocity
- | L profile is low and uniform.
| | v,' ~0-6 X 106 571
0.6 1 | |
l I
| |
I I
| |
0.2 - ! II ' oo, ,r.;!'
Ly Ny e S|
0.0 t T 1
-05 0.0 0.5 1.0 15
T
UNIVERSITY of _ ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program

Uri Shumlak, shumlak@uw.edu



r (mm)

B,/B,

Flow profile is correlated to plasma stability?
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Zeeman splitting measures internal magnetic field!

Zeeman splitting
measurements have been
made to determine the
Internal magnetic field of
the plasma pinch.

Impurity emission of the C IV
doublet at 580.1 &
581.2 nm is collected
perpendicular to the
plasma.

Circularly polarized light is
collected along 10 parallel
chords through the pinch.

Operated with reduced
capacitor bank energy of
35 kJ.

UNIVERSITY of
WASHINGTON

Impact Parameter = -11.3 mm

— 580 nm RHP
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Zeeman splitting measures internal magnetic field

Deconvolved magnetic field values are compiled for many pulses to provide
an average magnetic field profile. The magnetic field peaks at the pinch
radius and then decays as inverse radius to the value measured at the
outer electrode.
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Interferometry provides plasma density and radius

The Z-pinch equilibrium has no applied magnetic fields and is described by
B, d d
———(rBy )+ —(n(T;+T,))=0

‘Llordr( 9) dl‘( ( I e))

The four-chord interferometer provides chord-integrated density along
parallel chords spaced 10 mm apart. Density data obtained at the same
time as spectroscopy .
can be fit with a
constant density plasma |
core with a surrounding o
background.!

@ n'L ®

n, - 15

t=47us L0 "

Plasma radius, a, and core
density, n,, are
determined. .

Shown are a =13 mm, |
n,=1.5 x1022 m=3. . . . 1 . 0.0

-20 -10 0 10 20

ne*L (*1020 m-2)
[»)]
n. (*10%m>)

Impact Parameter, r (mm)

UNIVERSITY of
WASHINGTON 'Knecht, Golingo, Nelson, & Shumlak, IEEE TPS (2015)



lon temperature iIs measured from spectroscopy

Viewing the plasma " ———
radially with the ICCD 08 - = .
spectrometer, the IceD

0.6

Pulse 80603010

Doppler broadening &
of impurity linesare @ oa4-
measured.
A 100 ns gate Is used
and triggered at 00
t=0.2to collect C Il
emission (229.7 nm). : |___ skl
The chord-integrated
data is fit to
determine ion
temperature.

Shownis T, =71 eV.

200 é.
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T T 1 0
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Thomson scattering measures hot plasma core

A single-point Thomson scattering system has been developed and
Installed on ZaP. The diagnostic uses a 10 J Korad ruby laser, a
Hibshman spectrometer, and an array of PMTs for 8 wavelength bins.

The system views a
cylindrical scattering
volume 2.5 mm X ®3 mm
at the machine axis. The
laser pulse and scatter
pulse waveforms are
recorded, as well as
background light.

Results show an electron
temperature of

@® Experimental Data
Numerical Fit

T, =64 eV

Scattered Light Signal (arb. units)

T.=64 = 11 eV. ©
®
Pulse 80613031
660 670 680 690
A (nm)
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Radial forces balance demonstrating equilibrium

The experimental values can now be used to determine consistency
with equilibrium force balance. Using the data presented:
a=13mm,n,=15%10%?m3, B,,, = 0.13 T, (assuming no current
outside of pinch B,=1T).

Assuming a uniform pressure inside the plasma core, gives a total
temperature

T.+T,=160eV.

This value can be compared with the independently measured ion and
electron temperatures.

I +T,=71eV+64eV =135eV

UNIVERSITY of ) ZaP Flow Z-Pinch
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ZaP-HD expands the capabillities of ZaP

ZaP-HD Flow Z-Pinch separates the acceleration and compression
functions to increase control of density, flow, and magnetic field.

ZaP — original experiment that demonstrated sheared flow stabilization

LT
- AN

! 100 cm !
ZaP-HD — new experiment that investigates scaling to HEDP conditions

Acceleration Region Assembly Region
(1 meter)
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Simulations show formation of high pressure plasma

Time-dependent
simulations of ZaP- _
HD indicate the LiEE pressure,pa
formation of a high E t=30us
pressure plasma that = |
extends through the
Z-pinch assembly
region and has a
high degree of axial i
uniformity. E t=60us

Simulations are
performed with the
Mach?2 resistive
MHD code using
realistic circuit
solvers from two
capacitor banks.

2
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ZaP-HD is flexible platform to study sheared flow effects

ZaP-HD experiment offers independent control of plasma acceleration,

which dictates the mass in the plasma column, and the pinch current,
which compresses the plasma column.

The acceleration

capacitor bank drives — fo
current between the oo | — o

inner and middle

electrodes.

100 —

The compression
capacitor bank drives
current between the

. 0_
inner and outer ’

Plasma Current (kA)

electrodes.
Relative trigger timing is 0
a user-specified run | | | | \, \
parameter 0 20 40 60 80 100 120
' Time (us)
UNIVERSITY of _ ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program
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ZaP-HD design allows detailed measurements

Magnetic probes in ZaP-HD are located to allow 3D reconstruction of the
magnetic topology along the entire 50 cm length of the pinch plasma.

Consistent with ZaP experimental results, a quiescent period is observed
in ZaP-HD. The behavior is evident at all axial locations along Z-pinch.

1.0 .
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Velocity profiles exhibit shear during quiescent period

Preliminary velocity measurements show a sheared flow during the
guiescent period. The shear reverses but remains large and is
hypothesized to produce stability.
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Holographic interferometry measures the density profile

Digital holographic interferometer uses a new Ekspla Nd:YAG laser* and
digital SLR to provide high-resolution measurements of the plasma
density structures.

beamsplitter
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Z-pinch
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| \_J
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Holographic interferometry measures the density profile

The digital hologram is recorded on the camera and then numerically
reconstructed to give the complex wave field, which gives the phase

change. After unwrapping, a 2D map of phase change results.

The line-integrated g x10%

density is Abel
iInverted to yield —
a density profile.  E 4}

0 0.2 04 06 0.8
r [cm]
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Holographic interferometry measures the density profile

The digital hologram is recorded on the camera and then numerically
reconstructed to give the complex wave field, which gives the phase

change. After unwrapping, a 2D map of phase change results.

The line-integrated g x10%

density is Abel
iInverted to yield —
a density profile.  E 4}

Assuming a ol
constant drift

speed and 0 02 04 [ o]fe 0.8
. ricm
matching the

experimentally
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plasma current, E,l
the magnetic @
field profile is i
computed. 0 , l . ,
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Holographic interferometry measures the density profile

The digital hologram is recorded on the camera and then numerically
reconstructed to give the complex wave field, which gives the phase

change. After unwrapping, a 2D map of phase change results.

The line-integrated
density is Abel
inverted to yield
a density profile.

Assuming a
constant drift
speed and
matching the
experimentally
measured
plasma current,
the magnetic
field profile is
computed.
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ZaP plasma features extend to ZaP-HD

ZaP demonstrated sheared flow stabilization and produced high-
temperature, high-density, long-lived pinch plasma.

Entity

asma Lifetime 20 — 50 ps

ZaP-HD provides flexibility to separately control plasma acceleration and
compression, and produces plasmas with higher temperatures and
higher densities with similar long lifetimes.

UNIVERSITY of ) ZaP Flow Z-Pinch
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Z-pinch scales to HEDP and to fusion reactor plasmas

Flow-stabilization theory of a Z-pinch shows no additional limitations as the
plasma is scaled to different parameters. If the experimental results also
hold, then the Z-pinch can be scaled from ZaP conditions to higher
performance conditions by assuming adiabatic compression

(2)-5(027)-

dt\n? ) dt\ pr1

and using the linear density is given by the Bennett relation:

2
(1+ Z)NKT = ‘g’; , where N = JO r)2rrdr.

. . . 2 v
The resulting scaling relations are! p, n, T, [ I, ),,_1 ( N, )},_1
1 7 pr m Ty N
A
a np Ny s Nj n, (T, -1 _ (2 Ny r-1
mo T, I Ny

UNIVERSITY of
WASHINGTON 1Shumlak et al., FST (2012)



Pressure (Pa)

Z-Pinch scales to HEDP and to fusion conditions?

Starting with ZaP plasma parameters, the _ P
plasma can be scaled by increasing the B Py, + Py + Prag
current with a fixed linear density.
Fusion gain Q now includes flow power.

Assuming steady state:
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Results motivate the Fusion Z-pinch Experiment (FUZE)

UW and LLNL are partnering on a new ARPA-E project, FUZE, to
Investigate the viability of a compact fusion device based on the
sheared flow stabilized Z-pinch.*

— How do drift and kinetic effects alter plasma stability?

— Are there limitations to sheared flow stabilization?

Pulse Power Driver

___Thyristor, injection electrodes
“*<} <'f ~ To/From
= o SF |W \N\f“ { e gas recovery/mjection system
Liquid metal performs
multiple jobs:
e Protects the walls
To/From
e Act as one of the St R Pinch Flow
electrodes o i[ N I
o H ransfer flui en PhLiorsati LI —
eat transfer fluid = s : ﬁ
Recirc Pump
UNIVERSITY of
WASHINGTON Aerospace & Energetics Research Program

Flow-stabilized pinch

*Postdoctoral positions
are available.

ZaP Flow Z-Pinch

Uri Shumlak, shumlak@uw.edu




EUV light source based on the SFS Z-pinch

If Moore’s Law will end, unless EUV lithography is successful.

For over ten years, the semiconductor industry has searched for an EUV
(13.5 nm) light source with sufficient power. None has been found.
The leading approach hits tin droplets with a high power laser to produce

short bursts (100 ns) of EUV light.
Our approach?! forms an SFS Z-pinch from xenon to emit 4 us pulses of
EUV light from a plasma volume less than 1 mm?3.

. - - __-‘ | P o

UNIVERSITY of
WASHINGTON 1Shumlak, Golingo, & Nelson, US 7,372,059 B2; US 7,825,391 B2;



Summary & Conclusions

e Nuclear fusion has an energy rich and abundant fuel that alleviates
many of the problems of current energy sources.

e Mainline approach to fusion energy leads to a large, expensive reactor.

e Innovative approach using sheared flows instead of magnetic shear for
stability could provide more compact and affordable reactors.

e The ZaP experiment produces Z-pinch plasmas that exhibit gross
stability during an extended quiescent period.

e The quiescent period is coincident with a sheared plasma flow that is
consistent with sheared flow stabilization theory.

e ZaP-HD extends the positive results to investigate scaling of the flow
Z-pinch to higher energy densities.

e Scaling relations demonstrate that the sheared flow stabilized Z-pinch
can be scaled to fusion conditions with reasonable parameters, which
will be pursued with the new FUZE project.

e Sheared flow stabilized Z-pinch also makes a viable EUV light source.

UNIVERSITY of ) ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program Ui Shumlak. shumlak@uw.edu



Backup Slides
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Astrophysicists observe extended plasma jets.

Long-lived astrophysical plasma jet structures have been observed to
have remarkable stability.

The jets arise from many diverse sources such as active galactic
nuclei (AGN), massive black holes. Length is 300,000 lightyears.

Cygnus A
UNIVERSITY of ) ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program Ui Shumlak. shumlak@uw.edu



Astrophysicists observe extended plasma jets.

Long-lived astrophysical plasma jet structures have been observed to
have remarkable stability.

The jets also arise from newly born stars, young stellar objects, such
as Herbig-Haro objects. Length is 12 lightyears.

UNIVERSITY of ) ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program
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Other examples of HH objects exist.

Length is 60 lightyears. Length is 1 lightyear.

UNIVERSITY of - ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program
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Observed behavior is unexplained.

Polar jet

Jet formation mechanism is believed to involve .
) ) ) ) Accretion disk
iInward mass flow in an accretion disk.

Mass carries an axial magnetic field that twists at \
the poles and produces bipolar jets.

= Why are plasma jets so stable?
=» How are such large aspect ratios produced?

UNIVERSITY of ) ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program

Uri Shumlak, shumlak@uw.edu



Nonlinear simulations support the linear result.
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Nonlinear simulations support the linear result.
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Perforated conducting wall isolated stabilization effect!

Close-fitting conducting walls are known to stabilize gross plasma
motion. Sheared-flow stabilizing effect was isolated by perforating
conducting wall, ~70% removed.

Overall plasma behavior was indistinguishable.

Solid Conducting Wall
Neutral-Gas Injection Plane z=0m z=0.35 n"/

End Wall

Inner Electrode Perforated Conducting Wall

-

|
L

Coaxial Accelerator z=031Tm z=0.69m

UNIVERSITY of
WASHINGTON 1Knecht, Lowrie, & Shumlak, IEEE TPS (2014)



ZaP-HD design allows detailed measurements

Large rectangular openings in the outer electrode and corresponding
viewports provides extensive optical access to the plasma for fast
framing photography, interferometry, and spectroscopy.

Pulse 141002014

Acceleration Region Assembly Region
”’| 1 meter -
UNIVERSITY of _ ZaP Flow Z-Pinch
WASHINGTON Aerospace & Energetics Research Program Ui Shumlak. shumlak@uw.edu



ZaP-HD design allows detailed measurements

Magnetic probes in ZaP-HD are located to allow 3D reconstruction of the
magnetic topology along the entire 50 cm length of the pinch plasma.

Consistent with ZaP experimental results, a quiescent period is observed
in ZaP-HD. The behavior is evident at all axial locations along Z-pinch.
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Flow Z-pinch can generate fusion reactor plasmas

Analysis of the flow Z-pinch using the scaling laws leads to a solution with
reasonable size (length L and radius a) and high power.

Fusion power is given as

n2

Pf =npn 0V) . I DTimzL = " (ov) I DTimzL

Input power must be supplied to heat and compress the plasma, to drive the
flow, and to replace radiative losses.

P, = d5h kT wdL for a=D,T,ee
2 ” a a

= 3nkTwa’l = 3nkT vz7m2

1 M, +M M. +M
Pﬂowzzmvgz D Tﬁvzzimzl,z D4 Tnvi’imz
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