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Gyrotrons - most powerful MM wave and THz sources 
Gyrotrons 

Updated from Granatstein et al. Proc. IEEE 1999 



Gyrotron Concept 
 MW gyrotron for plasma heating and current drive 

JAEA ITER 1 MW, 170 GHz gyrotron 
 K. Sakamoto et al., Nucl. Fus. (2009) 



 Gyrotron is an electron cyclotron resonance maser 
 
 
 
 
 

Electron Cyclotron Maser Dispersion Relation 

Dispersion 
Relation 

Waveguide Mode: 

Cyclotron Mode: 

~ 28 GHz/T 

2/122 )/1( −−= cvγ
Lorentz Factor – Relativity 

s = harmonic number 



Gyrotron Devices 

Flyagin IEEE MTT 1977 
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Diode Magnetron Injection Gun for a 110 GHz Gyrotron 

Electron Gun 

• Adiabatic compression of annular electron beam from the cathode to the resonator 
• Conservation of            ; increase of  

• Low velocity spread required 
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Interaction Structure 
 Open Resonator with cutoff towards the electron gun 
 Beam radius is optimized to interact with the desired mode 

Cavity Geometry 

Optimal electron 
beam position 

14 λ 

TE22,6,1 Cavity at 110 GHz 

• There are 282 modes at lower frequency 
than the TE22,6 mode!  

High Order Modes 



Linear Theory: Starting Current and Mode Competition 



Efficiency plot 
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Nonlinear Theory - Efficiency 
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Output Coupler 
 Internal Mode Converter (IMC) 

converts the cavity mode into a 
Gaussian Beam 

 Launcher is a waveguide section 
with profiled walls designed to 
generate a mode mixture resulting 
in a Gaussian-like pattern on the 
surface 

Launcher designed using code LOT 

J. Neilson, JIMT (2006) 



Topics 

 Introduction to Gyrotrons 
 Gyrotron Physics and Technology 
 High Power Gyrotrons and Applications 

 Plasma Heating with Megawatt Gyrotrons 
 Spectroscopy with THz Gyrotrons 
 Materials Processing 
 Novel  and Future Applications 

 



Megawatt Gyrotrons 
Megawatt 



D-IIID 110 GHz ECH System 

• Highest Power ECH System 
• up to 10 s pulses 
• Corrugated aluminum transmission 

lines propagate HE11 mode with low 
loss 
 

 # Frequency Power 
6 110 GHz 1.0 MW 
1 110 GHz 1.2 MW 
1 117.5 GHz 1.5 MW 

J. Lohr, General Atomics, 2012 



Megawatt Gyrotrons at DIII-D 

• 1MW, 110 GHz gyrotron 
installed in SC Magnet • 1.2 MW, 110 GHz Gyrotron 

CVD 
Diamond 
Window 

K. Felch, EPJ Conf. Web, 2012 



W7-X Stellarator Germany 

V. Erckmann, W7-X, 2012 

(cryo-free magnets) 

10 MW, 140 GHz ECH System 



ITER 



ITER ECH System 

M. Henderson, ITER, 2012 



Low Loss Transmission Lines 

• 24 MW of gyrotron power at 170 
GHz; 20 MW at the plasma 
• Gyrotron Gaussian Beam mode 

purity >95% 
• Loss budget <17% 

• 63.5 mm diameter corrugated Al 
waveguides transport the HE11 mode 

•  Losses occur due to both ohmic loss 
and mode conversion loss to non- 
HE11 modes 

• US responsible for supplying the 
transmission lines 

HE11 LP11 LP32 E. Kowalski, IEEE MTT, 2010 
M. Shapiro, FS&T, 2010 
D. Rasmussen,  US ITER, 2012 



170 GHz, 1 MW JAEA Gyrotron 

K. Sakamoto, 2012 



170 GHz, 1 MW Gyrotron - Russia 

G. Denisov, IVEC 2013 

• TE25,10 Mode Gyrotron 
• 70kV, 45 A 
• 0.96 MW 
• 55% efficiency 
• 1000 seconds 

 



THz Gyrotrons 

THz 

• High power at THz freq. is tens to hundreds of Watts 



THz Gyrotrons for DNP/NMR 

NMR magnet 

Gyrotron 

Transmission 
line 

- Transfer of e- spin 
polarization to nuclear 
spin polarization 

Frequency 140-600 GHz 

Tuning range ~ 1 to 2 GHz 

Power 10 – 100 W  (CW) 

Power stability 1% for 24 hours 

Frequency 
stability 1 MHz 

13C Chemical Shift (ppm) 

DNP signal 
enhancement = 80 

20 mM TOTAPOL in frozen glycerol/water with 2 M 13C Urea 

µ waves on 

µ waves off 

L. R. Becerra et al. Phys Rev Lett  (1993) 



250 GHz Gyrotron for DNP/NMR 
Operation Voltage, V0 
(kV) 

12 

Beam Current,  
I0 (mA) 

180 

Operating Mode TE521 

Gyrotron Tube Output 
Mode 

HE11 

Magnetic Field, B0(T) 9.0 

Cyclotron Harmonic 
Number 

1 

Output Power (W) 30 

 Dynamic Nuclear Polarization NMR yields signal increase up to 600! 
 Gyrotron has 3 GHz tuning range 

V. S. Bajaj et al., Journal of Magnetic 
Resonance Vol. 189 (2007) 

 250 GHz / 380 MHz 

K. E. Kreischer et al., Proc. IR MM 
Waves Conf. (1999) 



Moving to Second Harmonic: 460 GHz 

M. K. Hornstein et al., IEEE Trans. Elec. Devices (2005) 
A. C. Torrezan et al. IEEE Trans. Plasma Sci. 2010 

Image of output 
beam 

• ω≅2ωc  second harmonic 
• Gain ~ (      )2n  
• (      )2 = 0.04 at 12 kV 

cv /⊥

cv /⊥



Bo = 8.43 T, Ib = 100 mA 

• Broadband frequency tuning @ 2ωc: 1 GHz 

460 GHz gyrotron – Voltage Tuning  

A. C. Torrezan et al. IEEE Trans. Plasma Sci. 2010 



Gyrotron Stability 

 24 hour run at 460 GHz; output 
power stable to ± 0.5 % 

296 297 298 299 300 301

 

 

 140 GHz oscillator bandwidth 
< 1 MHz 

S-T Han et al., IEEE Trans Plasma Sci 2007  

Power (arb. Units) 
130 129 128 131 132 
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Bruker DNP/NMR Systems 

263 GHz for 400 MHz NMR 527 GHz for 800 MHz NMR 

http://www.bruker.com/products/mr/nmr/dnp-nmr/overview.html 



Materials Processing Gyrotrons 

Materials 
Processing 



Materials Processing 

 Non-contact, rapid heating of ceramics, glass, semiconductors 
 
 

• Power ~ 1 - 20 kW 
•  Frequencies ~ 24 to  

84 GHz 
• Used with materials of 

low loss tangent at 
lower frequencies – 
power absorption 
increases with frequency 
 

• Large scale 
applications? 

Gycom 30 GHz 
Gyrotron and 

Applicator 

CPI 28 GHz 10 kW 
Industrial Gyrotron 



• Applications: radar, spectroscopy 
Gyrotron Amplifiers 

Gyrotron 
Amplifiers 

(Peak 
Power) 



Interaction Region 

 Amplifiers have new physics challenges: 
 Instabilities; single pass gain; role of velocity spread 

B0 Amplifier 
Waveguide Electron Beam 

Input Output 
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Ultra High Gain Gyro-TWT 

 Instability stopped by highly 
lossy circuit 

 93 kW, 70 dB gain at 35 GHz, 
with 3 GHz Bandwidth 

K. R. Chu et al, PRL (1998) 



Gyrotron Amplifier Research at MIT 
 High power microwave amplifiers for time-domain DNP 

NMR spectroscopy based on novel structures 
 140 GHz Gyrotron Amplifier 
Confocal Structure 
34 dB Gain, 820 W  

250 GHz Gyrotron Amplifier 
Photonic Band Gap Structure 

38 dB Gain, 45 W 

Electron gun 

Power supplies 
and control 

25 W / 139-141 GHz 
EIK tunable source 

6 T  magnet 

Output window 



TE03-Like Mode 

 Defect region in photonic structure confines waveguide 
mode 

4 mm 

10 mm 
PBG Waveguide: TE03-like Mode  

Circular Waveguide: TE03 Mode  



Experimental Setup 

9.6 T Magnet 

Electron Gun 

HV Modulator Transmission Line 

Solid State Source 
30 mW 248 GHz – 258 GHz 

Heterodyne  
Frequency Detector 

Control System 

Gyrotron  
Amplifier 



Peak Power and Gain 

 7.5 mW Input Power (after isolator) 
 45 W Output Power 
 37.8 dB Gain (50 dB Circuit Gain) 
 Bandwidth = 400 MHz, limited by input coupler 

f  = 247.7 GHz 
Vk = 32 kV 
Ib = 0.345 A 

α = 1.12 
B0 = 8.90 T 

E. Nanni et al. Phys Rev Lett 2013 



Novel Applications 



Imaging and Inspection 

 200 – 400 GHz gyrotron 
radiation images material on a 
conveyor belt 
 Application to the food industry 

 Metal or other foreign objects 
are identified  

S-T Han, IRMMW-THz Conf. 2011, 2012 
S-T Han, J. Phys. Soc. Korea 2012 



MIT Study of Air Breakdown 
 Air breakdown using 1 MW, 110 GHz pulsed (3 µs) gyrotron 

beam E 

 2D arrays, 50-100 filaments 
 Quarter-wavelength separation 

 λ/4 ~ 0.68 mm 

Open-shutter photographs  
of free-space breakdown. 

Y. Hidaka, PRL, 2008 
J. Hummelt, PoP, 2012 

Top View 

Side View 



Radioactive Material Detection 

 210 kW, 670 GHz 
gyrotron built with a 
pulsed solenoid 

 Remote detection of 
radioactive materials 

 Seed electrons 
produced by 
radioactivity will allow 
air breakdown by the 
THz radiation, leading 
to detection 

G. Nusinovich, JIMT, 2011 
M. Glyavin, APL, 2012 



Rocket Launcher 

Rocket Launch – Artist’s Concept, NASA 

Lab test of rocket at 
JAEA by Univ. 

Tokyo team 

A. Murakami, AIAA, 2012 

Beamed Energy Propulsion Concept 

J. Oda, JAEA, 2012 



Conclusions 

 Gyrotrons are the most powerful sources of radiation in the 
millimeter wave and the Terahertz regions 

 Gyrotron oscillators have three major applications 
 Plasma Heating 
 Materials Processing 
 Spectroscopy including DNP/NMR 

 Gyrotron amplifiers are less well developed but have 
significant applications 
 Radar, Spectroscopy 

 High power gyrotrons and applications have a promising 
future! 
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