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Introduction

* several exciting areas have emerged in LTPs in recent decades:
- microplasmas, nanostructuring and materials fabrication,
metamaterials and photonic crystals, medical therapies...

* many long-standing questions relevant a range of plasmas can now be addressed using new
tools: experimental and numerical




Progress in plasma-assisted deposition

* emergence of the now well-known HiPIMS (high power impulse magnetron sputtering) regime for

planar magnetrons
e.g. Kouznetsov et al, Surf. Coat. Technol. 122, 290 (1999)
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Progress in plasma-assisted deposition

the promise offered by this device is an incentive to advance modeling and experimental tools

ideally, we wish to exploit methods which are:
- non-.mvaswe, non-perturbative = optical diagnostics
- spatially-, temporally- resolved

Thomson scattering: elastic scattering on free charged particles
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Information from Thomson scattering
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Electron property measurement with ITS

* Incoherent Thomson scattering (ITS)
- challenges:
low density, few photons
stray light and other signals
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* over the past few years, we've been able to lower the detection threshold to 10'® /m?3
==)> new range of diagnostic studies accessible



Fluctuation measurement with CTS

* Coherent Thomson scattering (CTS)
- challenges:
low density, more complex setup
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* signal analysis (real amplitude, frequency content)
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Fluctuation measurement with CTS

e signal analysis (preservation of temporal features)

STFT of complex signal
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* sophisticated studies of plasma turbulence at scales inaccessible to other diagnostics are
possible



HiPIMS plasma features

e planar magnetron operation: rapidly-varying current profiles
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Progress in plasma-assisted deposition: modeling

* inrecent years, a number of codes have emerged to meet the needs of the HiPIMS regime

- self-consistent PIC-MCC in 2D
for short pulses

Revel et al, PSST 27, 105009 (2018)

- PIC-MCCin 2D and 3D
(linear magnetron)

Pflug et al, Surf. Coat. Tech. 260, 411 (2014)

- ionization region global model
Raadu et al, PSST 20, 065007 (2011)

- bulk plasma model

Brenning et al, PSST 17, 045009 (2008)

* none yet has the capability to fully capture all the multiscale (temporal and spatial) physics of the

HiPIMS regime

9 us discharge pulse: 3 weeks parallel computing on 60 cores,

each operating at 2.1 GHz
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Progress in plasma-assisted deposition: modeling

* electron property determination in codes used in HiPIMS

Raadu et al, PSST 20, 065007 (2011)

Revel et al, PSST 27, 105009 (2018)
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given that every existing code has limitations, worth validating their outputs with diagnostics

Langmuir probes: unsuited for near-cathode region
OES: widely used, but line integrated + emission models required

THz: density measurements
Meier et al, PSST 27 035006 (2018)

A Ando et al, J. Phys.: Conf. Ser. 227 012016 (2010)
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Progress in plasma-assisted deposition: ITS

* electron property determination with ITS:
access to highly-resolved spatially, temporally-resolved information
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Progress in plasma-assisted deposition: ITS

Ar working gas,

e electron property determination with ITS

Ti cathode
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Progress in plasma-assisted deposition: ITS
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* from these recent implementations, ITS can offer detailed information on local electron properties
and dynamics (drift)

* other fundamental behavior of such magnetized discharges can be elucidated through CTS
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Fluctuations in HiPIMS

* The vast majority of studies of fluctuations in planar magnetrons have focused on large-scale self-
organization

diagnostics used:
- spectroscopic analysis
- probes

Anders et al, J. Appl. Phys. 111, 053304 (2012)

e azimuthal instabilities invoked to explain anomalously large discharge current
observed: jy/jp =2
typical classical collision-based: jy /jp =16 —35

* measurement of fluctuations using probes, associated with modified two-stream instability (MTSI)
Lundin et al., PSST 17, 025007 (2008)

* recent studies linking spokes to anomalous transport
Hecimovic, J. Phys. D: Appl. Phys. 49, 18LT01 (2016) 16



Progress in plasma-assisted deposition: CTS

 measurements using CTS: presence of puscale electron density fluctuations compatible with the ECDI

(electron cyclotron drift instability)
Tsikata and Minea, PRL 114, 185001 (2015)
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* observation wave vector aligned to capture electron density
fluctuations in ExB drift direction
 simultaneous observation of both sides of the racetrack
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* note: unlikely to be a single instability responsible for transport
- mode coupling (illustrated in simulations)
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Studies of electron density fluctuations

10°F

an axially-propagating wave also present: ion-ion two stream instabilitv (1ITSI)

Tsikata et al., Phys. Plasmas 21, 072116 (2014) ok
Hara and Tsikata, Phys. Rev. E 102, 023202 (2020)
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Studies of electron density fluctuations

* |ITSI features first identified in thrusters: MHz frequencies, mm-length scales, primarily axial
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Hara and Tsikata, Phys. Rev. E 102, 023202 (2020)
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Studies of electron density fluctuations

* electron transport was found to be increased by coupling of ECDI to IITSI:
non-linear effects revealed by simulations
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Studies of electron density fluctuations

in the HiPIMS regime of planar magnetrons, axial fluctuations (IITSI) have a distinct character

propagation of fluctuations both
upstream and downstream
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Studies of electron density fluctuations

e afeature unique to the HiPIMS regime: field reversal

ionization region
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» bulk plasma model
Brenning et al, PSST 17, 045009 (2008)

e experimental investigations into the propagation of fluctuations can offer insights into such

phenomena
22



Conclusions

* advanced experimental implementations offer a wealth of insights into complex plasmas
- particle properties
- transport and plasma fluctuations

* in recent studies, we've sought to clarify physics of a particularly important technological
cold plasma

e these studies provide a means to validate and improve physical models

as always, the physics looks more complex (and intriguing!) the more we examine it,
but our understanding is progressing rapidly &
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