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Low-temperature plasma applications

• applications are diverse
• manipulating plasma is a means to control 

technological outcomes
• diagnostic tools are needed to improve plasma 

science understanding
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LTPs are non-equilibrium systems

4

EM power input e- (1-10 eV)
------------------

ions (cool)
neutrals (cool)

Plasma
collisions with high 

energy e- drive:
excitation (glow)
ionization (sustains 
plasma)
high-T chemistry in 
low-T gas

e- + A ⟹

• energetic electrons are key link in process outcomes
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Electron energy distribution functions

• Maxwellian EEPF appears as 
straight line - 
 corresponds to thermodynamic 

equilibrium within electron population
 characterized by single parameter - Te

• RF inductively coupled plasmas: 
EEDFs with ‘depleted’ high energy 
‘tails’
 attributed to:

 inelastic collisions
 escape to walls

Godyak et al., PSST 11, 525 (2002)
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Presentation Outline: Optical diagnostics 
for plasma characterization
• Optical emission spectroscopy of argon-containing plasmas

 emission model for determination of
 EEDF, Teff

 metastable and resonance level densities
 electron density - ne

 Example: non-Maxwellian EEDFs in inductively coupled plasma

• Real-time plasma monitor
 metastable and resonance level densities - nm and nr

 effective electron temperature - Teff

 electron density - ne 

• VUV detection
 resonance level densities - nr - as a proxy for Ar VUV flux

6

Wednesday, December 10, 14



Each plasma emits distinctive spectrum

• http://wapedia.mobi/en/Gas_filled_tube - different rare gases

• Also, plasmas with the same gas changes colors with conditions 7
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Partial Ar energy level diagram

• Allowed transitions resulting in photon emission
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Argon emission spectrum

• Ultimate Goal: use emission spectra to extract encoded 
information about plasma conditions
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Inductively coupled plasma (ICP)

• Operates in Ar and Ar mixtures at 13.56 MHz
• Electron energy distribution functions (EEDF)

 Langmuir probes 
 optical diagnostics
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Determining plasma properties from 
spectrum: emission model

• Goal: 
 predict photon emission rate 
Φij  for i⟶j

• Approach:
 account for mechanisms that 

populate emitting state - level i

11

l

i

j

Oij
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Emission model

• Goal: 
 predict photon emission rate 
Φij  for i⟶j

• Include:
 electron excitation from level l

 excitation probability is a 
function of electron energy

 measured “cross sections” 
used to characterize excitation 
probabilities

12
l

i

j

Oij

e- excitation
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Emission model - excitation cross sections

• cross section vs. electron energy 
 measure of electron impact 

excitation probability
 key link between emission intensity 

and EEDF
 measured by Prof. Chun Lin’s 

group:
 excitation from ground state

• Phys. Rev. A 57, 267 (1998)
• Phys. Rev. A 68, 032719 (2003)
• Ar. Data Nucl. Data Tables 93, 831 

(2007)

 excitation from metastable levels
• Phys. Rev. Lett. 81, 309 (1998)
• Phys. Rev. A 59, 2749 (1999)
• Phys. Rev. A 75, 052707 (2007)

13
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Emission model - reabsorption

• Goal: 
 predict photon emission rate 
Φij  for i⟶j

• Include mechanisms for 
populating level i :
 electron excitation from level l
 radiation trapping: excitation of 

metastables by photon 
absorption

14
l

i

j

Oij

e- excitation

2px

1sy
radiation
trapping
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Emission model - cascades

• Goal: 
 predict photon emission rate 
Φij  for i⟶j

• Include mechanisms for 
populating level i :
 indirect electron excitation from 

level l
 cascades from higher lying states
 measured cross sections include 

cascades

15
l
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Oij

e- excitation
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trapping

direct
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Emission model - electron excitation of metastables

• Goal: 
 predict photon emission rate 
Φij  for i⟶j

• Include mechanisms for 
populating level i :
 electron excitation:

 from ground state
 from metastable/resonance  

levels
 photon reabsorption/trapping

 from metastable/resonance 
levels

16
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Excitation from resonance levels 1s2 & 1s4

• 1s3 and 1s5 are metastables: 
 no radiative losses
 high concentrations possible

• 1s2 and 1s4 populations significant 
when radiation is trapped:
 1s2 and 1s4 resonance levels: 

 have radiative decay channel to 
ground state 

 generally lower concentrations
 exception: reabsorption when 

ground state density is high
 Electron impact excitation from 

resonance levels significant
 cross sections not measured
 estimates used
 Adv. At. Mol. Opt. Phys. 54, 319 (2006)
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Cross sections: variations in threshold 
and energy dependence used in model

• 419.8 and 420.1 nm - 
close in wavelength

• difference between 
ground state and 
metastable cross 
sections

• large difference in peak 
intensities at 1 mTorr vs. 
25 mTorr
 higher ground state 

contribution at higher Te
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Emission model: summary

• Model goal: 
 predict photon emission rate Φij  

for i⟶j
• Effects included:

 electron excitation from level l
 cascades
 metastable contribution

 radiation trapping

• Needed inputs
 atomic data (Aij, cross sections,...)
 electron energy distribution 

function
 number densities (ground state 

AND 1sy for argon)
19

l

i

j

Oij

e- excitation

2px

1sy
radiation
trapping

direct

cascades

Wednesday, December 10, 14



Emission model: intensity of i→j transition

• sum over initial level l (ground state, 1s2, 1s3, 1s4, 1s5)
• klij is the electron impact excitation rate

 depends on cross sections, EEDF

• reabsorption correction factor Rij is function of 1sy concentrations
• use ratios to standard line to eliminate K, ne

• calculate line ratios for multiple trial EEDFs
• seek EEDF giving best match to observed line ratios 20
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Trials for Maxwellian EEDF

• minimum χ2  gives best fit electron temperature
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Emission model predictions

• contributions 
from ground 
state vs. 1sy 
levels
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Application:  
Non-maxwellian EEDFs in ICPs
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Inductively coupled plasma source

24

10 cm
inductively-coupled
13.56 MHz plasma
2.5-turn antenna

plasma

gas variable pressure 
(mTorr)

Power 
(W)

ne 
(cm-3)

Te 
(eV)

Ar

Ar

Ar/N2

Ar/Ne

Ne

pressure 1-50 600 1010-1012 2-6

power 2.5, 15 20-1000 109-1012 5, 3

0-86% N2 2.5, 15 600 1010-1011 5, 3

1-40% Ar 10 600 1010-1011 3-6

pressure 5-25 600 1-3 x1010 5-7

• 2.5 turn flat coil antenna
• 13.56 MHz
• 50 cm diameter chamber
• measure emission model inputs
• compare EEDFs with independent 

measurements
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Model input: ground state density 

• n0 = p/kTgas

• gas temperature determined with laser absorption 
spectroscopy

• Doppler width of 3p54s-3p54p transition line
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Model input: optical emission 
spectrum (OES)

• 300-1600 nm wavelength range
• 0.13 nm resolution
• Detectors:

 PMT 300-870 nm
 Ge detector: 300-1600 nm

26
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Model input: 1sy concentrations

• Method #1: optical absorption spectroscopy (OAS)
 white light absorption
 column density measurement

• Method #2: OES (next slide)
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Metastable/resonant densities from OES

• Method #2: OES
• OES preferable due to simplified 

instrumentation
• OES branching fraction technique:

 takes advantage of reabsorption by 1sy 
metastable and resonance levels

 reabsorption changes branching fractions
 use ratio of lines from same upper state

 extract set of nj densities from fit of model to 
observed ratios of different line pairs
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Metastable/resonant densities from OES

• OES method agrees with OAS over wide parameter range
 simple, non-invasive method to determine 1sy densities
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Compare emission model with EEDF from 
Langmuir probe

• compare to emission model output

30

10 cm
inductively-coupled
13.56 MHz plasma
2.5-turn antenna

plasma

Langmuir probe

0 5 10 15 20 25
2

3

4

5

6
Electron

Temperature
(Teff)

(e
V)

Pressure (mTorr)

0 5 10 15 20 25
0

20

40

60

80
Electron
Density

(1
010

 c
m

-3
)

Pressure (mTorr)

fe(V ) =
2me

e2A

�
2eV

me

d2I

dV 2

Wednesday, December 10, 14



Comparison assuming Maxwellian EEDF

• Te computed from
 emission model
 Langmuir probe fit
 agreement not great

• reason for poor fit
 EEDF is not Maxwellian
 actually, EEDF “tail” is depleted 

compared to Maxwellian

• other (less likely) possibilities:
 incorrect nl values
 incorrect cross sections
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Non-Maxwellian EEDF

• Langmuir probe measurement in ICP shows “tail” depletion
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Representing EEDF in emission model

• Goal: account for non-
Maxwellian energy dependence

• use “generalized x-form”

• Tx is an effective electron 
temperature (Tx=2/3<E>)

• c1 and c2 are functions of x
• x=1 corresponds to a 

Maxwellian
• x=2 corresponds to a 

Druyvesteyn
• x-form good fit for most ICP 

conditions
33
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EEDF with x=1.2 

• example shows improved fit to Ar probe data
• x ranges from x=1.2 to x=1.6 for Ar ICP
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OES also produces x=1.2

• emission model agrees well with measurement*

*Plasma Sources Sci. Technol. 19 (2010) 065001.
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Extension to Ar(3p55p) emissions - limitations

• 3px levels have longer radiative lifetimes than 2px levels
 2px levels: 20-35 ns
 3px levels: 80-160 ns

• Longer radiative lifetime increases chances of electron-atom 
collision while atom is in excited level
 electron-quenching: non-radiative decay out of level
 electron-transfer: excitation from 3px to another 3px’ level
 emissions redistributed
 need modified emission model

• Bonus: modified emission model predicts electron density

36
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Emission model including 2p and 3p

• agreement with probe: ±7%
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Ar pressure dependence

• Comparison of a) Maxwellian 
and b) x-form for
 Probes (solid)
 OES (open)
 ‘global’ model (line)

• Global model
 Volume averaged
 Particle balance – ionization rate 

must match wall losses
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Conclusions: Non-Maxwellian EEDFS

• Non-Maxwellian EEDFs have been observed using Ar emissions 
for wide range of ICP conditions
 sensitive to fairly subtle changes in EEDF
 “x-form” of EEDF well suited for ICP 

 captures EEDF tail depletion

• OES - BF is a simpler alternative to absorption spectroscopy to 
determine 1sy concentrations

• emission model must include contributions from:
 excitation to higher lying states followed by cascade
 excitation from metastable/resonance levels
 reabsorption by metastable and resonance levels
 electron-driven transfer between emitting levels closely spaced in energy

 Bonus: allows determination of electron density ne
39
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Real-time monitor of plasma conditions:
time-varying and pulse-modulated ICP
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OES plasma diagnostics in real time

• Verity spectrograph
 fast spectra acquisition
 compact
 low-resolution (~1 nm) spectra 

(200-800 nm)
 similar to systems often included 

on plasma process equipment

41JVSTA 021303, 2013
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Flow chart for real time measurements

42
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Pure Ar: real time/
pressure varied

• Computer controlled time-varying 
Ar pressure;  power held fixed at 
600 watts

• plasma parameters evolve in time 
in response to pressure change

• solid lines show instantaneous 
measurements vs. time

• dots are static measurements 
made with the same parameter 
settings

43
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Pure Ar: real-time/
power varied

• Computer controlled time-
varying Ar power;  pressure 
held fixed at 15 mTorr

• plasma parameters evolve in 
time in response to pressure 
change

44
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OES plasma diagnostics: gas mixtures

• Challenge: difficult to separate Ar 
OES lines
 from neighboring Ar lines
 from molecular OES features

45
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OES plasma diagnostics in real time

• Computer controlled Ar and N2 
flow rates;  pressure held fixed at 
15 mTorr, power at 600 W

46
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Detection of VUV in argon-containing 
ICP
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Overview

 VUV flux to wafer matters in plasma processing for 
integrated circuit manufacturing (and other applications!)

 Diagnostic challenge: no way to non-invasively measure 
VUV flux directly
–VUV is not transmitted by windows or air

 In Ar containing plasmas, VUV is emitted by resonance level 
atoms. We posed the following question: can non-invasive 
measurements of nr serve as a proxy for VUV?

 Experimental evidence indicates the answer is a qualified 
“yes”…
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VUV Photon Flux Detection – 2 methods

• Windowless NIST photodiode installed below ground electrode
• Relative VUV flux detected through visible fluorescence from 

sodium salicylate coated viewport
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Sodium salicylate signal: sensitive at 
wavelengths beyond photodiode limit

Due to different wavelength 
dependent sensitivities, relative 
signal strengths for photodiode and 
sodium salicylate vary with gas type

Ar energy levels
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Non-invasive measurement of resonance level 
density

Branching Fraction

• Intensity ratios altered by 
reabsorption in quantifiable way

• Reabsorption is a known function 
of resonant level density

PSST 18 (2009) 035017 

reabsorption by 1s states
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Radiation model predicts VUV signal

• Model elements

 Local VUV emission is proportional to resonance density

 Chance of emitted photon reaching VUV photodiode depends on:

 Geometry – line of sight through pinhole

 Reabsorption – “escape factor” depends on ngas=p/kTgas, thus:
• Gas pressure, p
• Gas temperature, Tgas

• Both photodiode signal and VUV flux to walls calculated
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Non-invasive measurement of gas temperature

Diode laser absorption
Tgas varies significantly

Gas density n = p/kTgas decreases as Tgas increases

Ground state atoms 
reabsorb VUV
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Pressure scan - Ar

Resonance density VUV (predicted by model)

VUV flux decreases with pressure due to enhanced reabsorption.
JVSTA, 021304, 2014
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Power scan - Ar

Resonance density VUV prediction 

VUV flux increases with increasing power – 
rarefaction leads to diminished reabsorption.
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VUV photon flux in Ar ICP from photodiode and 
sodium salicylate agree with model

- At higher pressures, radiation reabsorption increases due to 
increased ground state atom concentration.

- At constant pressure, VUV photon flux increases with power when 
excited state densities increase.

- Model is in accord with photodiode and sodium salicylate data
Wednesday, December 10, 14



VUV flux at electrode location

VUV photon flux is greater than ion flux for all conditions
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Ar/N2 plasmas -  Ar model works due to 
no N2 emissions in VUV range

JVSTA, March/April 2015
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For Ar/H2, H, H2 VUV (90-180 nm) emissions add 
to Ar signals at 104.8 &106.7 nm

Ar resonance 
level density 
increasing

H, H2 emissions 
dominate sodium 
salicylate signal

H, H2 contributions 
decrease with Ar 
dilution

PD barely sensitive 
to H, H2 emissions

n e 
in

cr
ea

sin
g

JVSTA, March/April 2015
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VUV: concluding remarks

 Non-invasive VUV detection has been demonstrated 

 A radiation model has been developed to infer VUV fluxes:
 Inputs: measured resonance level density, Ar pressure, gas 

temperature
 The model accounts for VUV reabsorption in plasma

 VUV fluxes from model in Ar agree with direct measurements using
 VUV photodiode
 Sodium salicylate fluorescence

 For Ar/N2 mixture, the model works well because only Ar contributes to 
VUV emissions

 For Ar/H2 mixture, H and H2 contribute to VUV emissions – relative 
contributions inferred by combining Ar model and sodium salicylate 
measurements
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Summary

• OES offers a promising approach to plasma characterization
 Non-Maxwellian EEDFs, electron density and effective temperature
 metastable concentrations
 real-time plasma parameters
 VUV
 method is 

 non-invasive
 applicable in rare gas containing plasmas
 applicable in conditions where Langmuir probes impractical

• Successfully applied to low-pressure ICP - what about higher 
pressure?
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