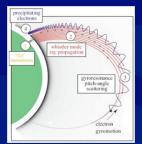
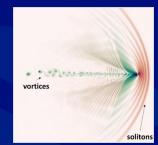


Space Science in an Anthropogenic Environment


Jesse Woodroffe Group Leader, ISR-1: Space Science and Applications


Michigan Plasma Science and Engineering Seminar

October 1, 2025

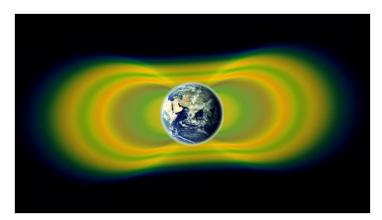
LA-UR-25-29683

Sources (clockwise from top):

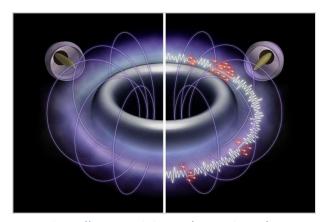
www.scientificame.rica.n.com/article.flow-earth-orbit-faces-a-spiraling-debris-threat

Overview

- 1. Introduction: Humans as Plasma Experimenters
- 2. Case Study: Starfish Prime
- 3. A Broader Theme: Anthropogenic Space Weather
- 4. Space Debris and Dusty Plasmas
- 5. Anthropogenic Electromagnetic Waves
- 6. Spacecraft Influences on the Environment
- 7. Synthesis and Outlook
- 8. Closing Thoughts



Introduction



The Evolving Use of Space as a Plasma Laboratory

- There is a long history of viewing space as a laboratory for basic plasma physics.
- Our growing human footprint in space affects the surrounding environment in numerous and potentially lasting ways.
- Increasingly, space is as much experiment as it is laboratory potentially both complicating and enriching scientific opportunities.

Source: https://www.eurekalert.org/news-releases/1034207

High Altitude Nuclear Explosions

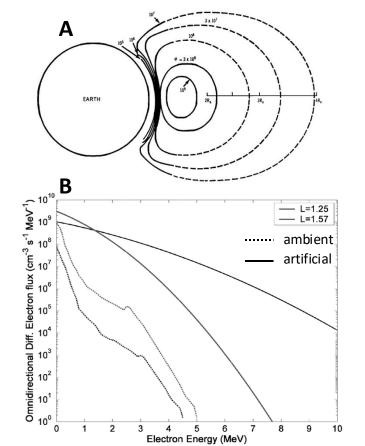
High Altitude Nuclear Explosions (HANE)

On July 9, 1962, the US detonated a 1.4 Mt nuclear device at an altitude of 250 mi above Johnston Island in the Pacific [source: DOE/NV—209-REV 16]

Initial Cloud*

Los Alamos

View from Hawaii



Artificial Aurora (See also LASL report LA-6405)

Artificial Radiation Belts

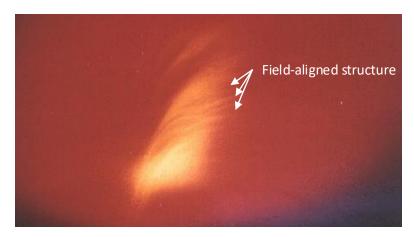
- One of the most striking results of Starfish Prime was the creation of an intense, longlived artificial radiation belt.
- The full spatial extent of the Starfish belt is not known, but it's thought that it extended beyond L=3, and Ariel showed enhancements out to 5- $6R_{\rm F}$

	Ariel	Traac and Transit 4B	Telstar	Tiros 5	Oso 1
Perigee, km	390	960	952	590	552
Apogee, km	1210	1106	5660	971	594
Inclination	54°	32°	45°	58°	33°
Altitude, km					
30°S latitude	1067	1000	5138	963	594
30°W longitude			1 758		
Calculated R/day					
outside vehicle	110,000	180,000	800,000	46,000	27,000
Length of machine run		,	•		
in satellite days	4	4	4	4	4
Elec/cm²/day	2.8×10^{19}	4.5×10^{12}	2.0×10^{13}	1.15×10^{12}	6.8×10^{11}

Sources

- (A) Hess (1963), https://doi.org/10.1029%2FJZ068i003p00667
- (B) Rodger et al. (2006), http://www.ann-geophys.net/24/2025/2006/

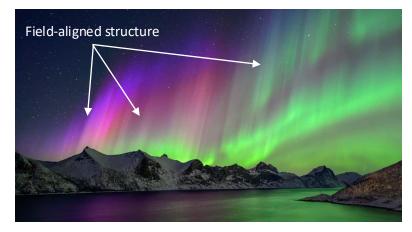
Satellite Impacts


- Space was not as crowded in 1962. as it is today, but there were more than enough in orbit to know that Starfish Prime had a big effect.
- These observations contributed to the establishment of radiation hardening requirements for spacecraft, adopted for both civil and military domains.
- Due to cost, many commercial spacecraft do not use hardening.

SATELLITE	TIME IN ORBIT	DAMAGE		
TRAAC	15 Nov 61- 12 Aug 62	1120 km x 950 km/32.4° Solar cell damage due to STARFISH PRIME Satellite stopped transmitting 36 days after the STARFISH PRIME event due to STARFISH PRIME radiation		
Telstar-1	10 July 62 - 21 Feb 63	5656 km x 955 km/45° 7 Aug 62 - Intermittent operation of one of two command decoders 21 Aug 62 - complete failure of the one command decoder Intermittent recovery made via corrective procedures power adjustments to affected transistors continuous commanding modified commands 21 Feb 63 - complete failure of command system end of mission Lab tests confirm ionization damage to critical transistors		
Explorer 14	2 Oct 62-8 Oct 63	98,850km x 278 km/33° problems encountered 10-24 Jan 63 Encoder malfunction-11 Aug 63-ended transmissions After 8-9 orbits, solar cell damage: Unshielded p-on-n:70% Unshielded n-on-p: 40% 3-mil shielded cells (both types): 10%		
Explorer 15	27 Oct 62-9 Feb 63	17,300 km x 310 km/18 minor short period encoder malfunctions Undervoltage turnoff 27 Jan 63 Second undervoltage turnoff 30 Jan 63 encoder permanent failure		
Transit - 4B	15 Nov 61 - 2 Aug 62	1110 km x 950 km/32.4 Solar panels showed 22% decrease in output 25 days after the STARFISH PRIME event Lead to demise of satellite		
Alouette - 1	29 Sept 62 - ?	1040 km x 993 km/80		
OSO-1	7 March 62 - 6 Aug 63	591 km x 550 km/32.8 Solar Array degradation due to STARFISH PRIME event Provided real-time data until May 64 when its power cells failed		
Ariel-1	26 April 62 - Nov 62	1210 km x 390 km/53. Undervoltage condition occurred 104 hours after STARFISH PRIME event —Solar Cell efficiency reduced by 25% Intermittent loss of modulation both on real-time telemetry and tape recorders —Speculation that this modulation problem was a result of a STARFISH PRIME - induced electrostatic discharge on the satellite		
Anna-1B	31 Oct 62- ?	*1250km X 1151Km/500 *Solar Cell deterioration due to STARFISH PRIME		

Source: DTRA-IR-10-22, https://apps.dtic.mil/sti/pdfs/ADA531197.pdf

A First Foray Into Anthropogenic Space Science



Post-burst Emissions from Starfish HANE

Anthropogenic

Characteristics: High energy, spatially localized within regions having magnetic conjugacy to burst.

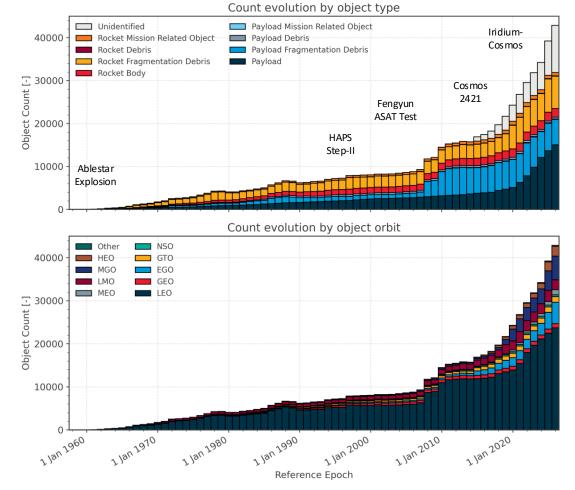
Driver: Nuclear explosion and follow-on processes including particle precipitation.

Aurora Borealis

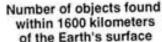
Natural

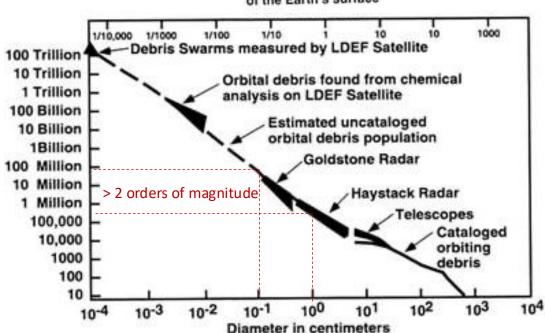
Characteristics: Low(er) energy, may be spatially distributed across regions with magnetic conjugacy to magnetotail.

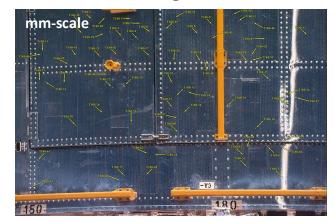
Driver: Magnetic reconnection (primarily) and follow-on processes including particle precipitation.

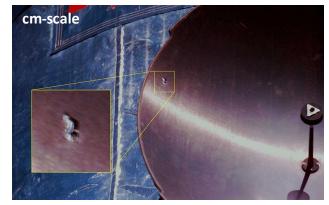


Dust and Debris


Space Debris

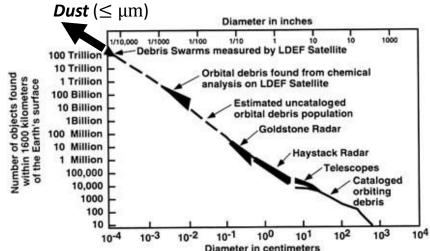

- Encounters with debris is a known threat for space assets and mitigation of debris is a driver of de-orbit requirements for all new missions.
- Unplanned or unusual human activity (explosions, ASAT tests) can (and do) cause rapid increases in the debris population.




The Debris Distribution

Debris damage to Hubble

Source: NASA ODPO


https://www.orbitaldebris.isc.nasa.gov/photo-gallery/

Source: National Academies https://nap.nationalacademies.org/read/4765/chapter/6

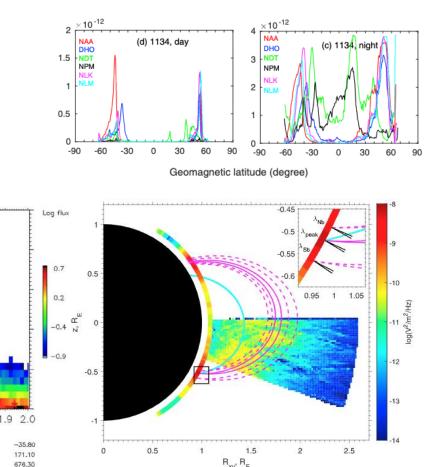
Space Dust – The Tail of the Distribution

- A robust power-law distribution suggests scale-free processes.
- In this case, debris-debris collisions can be inferred to be causing interactions create an ever-growing but ever-smaller cascade of collision products.
- Observations are consistent with scaling to micron and likely down to nanometer – dust – scales.
- Potential for long-term evolution of plasma environment. If... or when?

Havnes Parameter

$$P = 4\pi \, \lambda_D^3 n_d \left(\frac{r_d}{\lambda_D} \right)$$

- $P \ll 1 \rightarrow Dust in plasma$
- $P \gg 1 \rightarrow Dusty$ plasma


Electromagnetic Noise

VLF Transmitters

 The DEMETER satellite observed verylow frequency (VLF) energy enhancements that were directly traceable to back to ground-based VLF emitters.

- VLF transmissions are used for long-range naval comms.
- Signatures of precipitating particles are consistent with VLF-induced scattering.

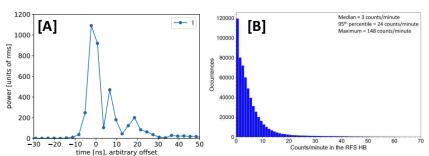
May 17, 2006

.5 1.6

-24.94

173.93

671.87


172.57

Savaud et al. (2008), https://doi.org/10.1029%2F2008GL033194 Zhang et al. (2018), https://doi.org/10.1029%2F2018JA025637

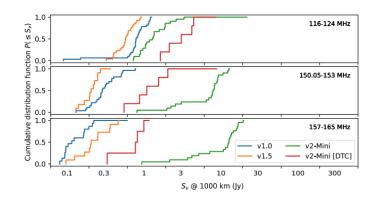
Electrostatic Discharge

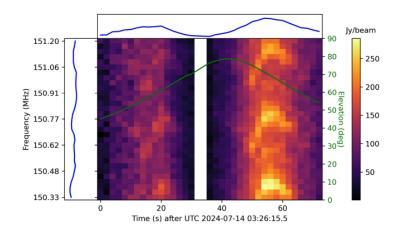
- The interaction between satellites and the environment is also a source of both routine and exceptional noise.
- Primary cause is interaction of satellite and natural plasmas.

THE SCIENCES A Dead NASA Satellite Has Sent a Strange Radio Signal to Earth — Here's How

Learn how a deactivated satellite sends signals from beyond, not by reviving its systems, but by inadvertently setting off sparks.

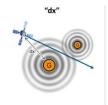
Sources

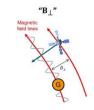

[A], [C]: James et al. (2025), https://arxiv.org/pdf/2506.11462


[B], [D]: Nag et al. (2025), https://doi.org/10.1016/j.asr.2025.07.026

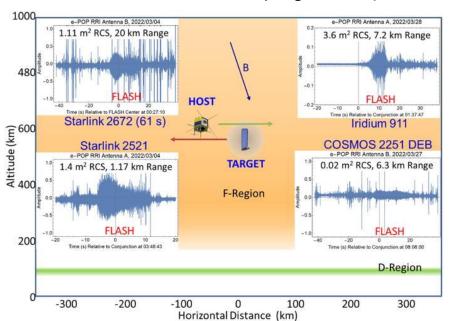
Constellation Effects

- The presence of Unintended Electromagnetic Radiation (UEMR) from large constellations of spacecraft is increasingly prominent in the 30-300 MHz (VHF) frequency range
- May impact lightning science and radio astronomy (early observations from the Square Kilometre Array radio telescope)
- There is already a well-known impact at optical frequencies.


Bassa et al. (2024), https://doi.org/10.1051/0004-6361/202451856
Grigg et al. (2025), https://doi.org/10.1051/0004-6361/202554787 10/7/20



Satellite Signatures


Signatures of Moving Spacecraft



Current hypotheses suggest that space objects produce detectable plasma signatures (this is the basis of the IARPA SINTRA program, https://www.iarpa.gov/research-programs/sintra).

Outlook

Challenge and Opportunity

- This is an incredibly interesting and challenging time for space science. Not
 only do we have a proliferation of measurements and interest from diverse
 stakeholders, but we may also have a complexification due to *interaction and*feedback between humans and the space environment.
- Space, particularly near Earth, can no longer be considered a pristine natural laboratory.
- Unless priorities and geopolitics change abruptly, we as a scientific community
 are going to have to come to terms with this new complexity. Historical results
 may some day, maybe soon no longer represent current realities and we
 will have to revisit core facts and assumptions about our space environment.

Thank You!

