Quasi-Monoenergetic Plasma Wakefield Acceleration at FACET

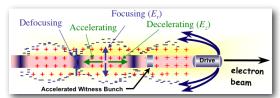
and plans for FACET-II...

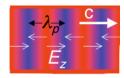
Vitaly Yakimenko, Mark Hogan, September 17, 2013

SLAC NATIONAL ACCELERATOR LABORATORY

Why Plasmas?

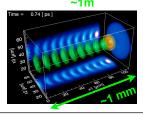
-SLAC

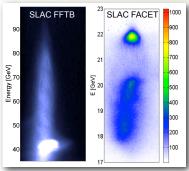

Relativistic plasma wave (electrostatic):


$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \qquad k_p E_z = \frac{\omega_{pe}}{c} E_z = \frac{n_e e}{\varepsilon_0}$$

$$E_z = \left(\frac{m_e c^2}{\varepsilon_0}\right)^{1/2} n_e^{1/2} \cong 100 \sqrt{n_e (cm^{-3})} = \underline{1GV/m}$$

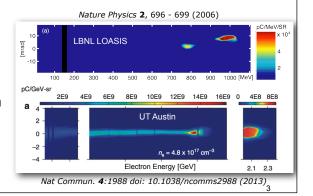
n_e=10¹⁴ cm⁻³

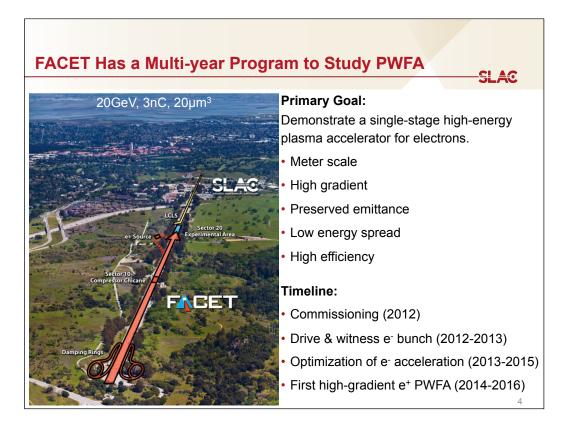

- Plasmas are already ionized, no break down
- Plasma wave can be driven by:
 - Intense laser pulse (LWFA)
 - Short particle bunch (PWFA)


Large Collective Response!

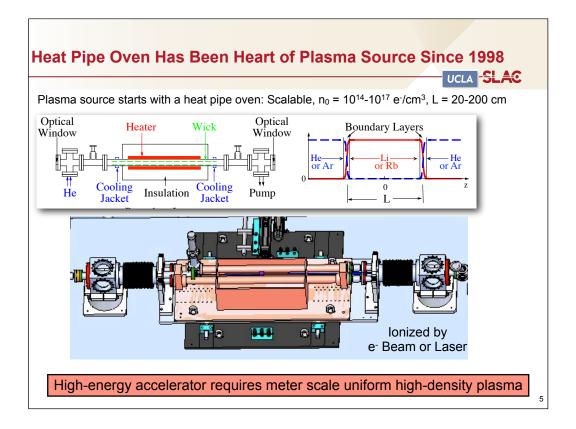
Electron Acceleration in Plasmas

-SLAG

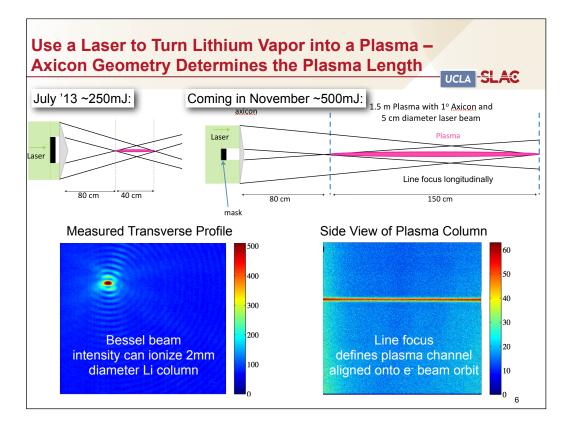

Nature **445** 741 (2007)


Laser Driven Plasmas:

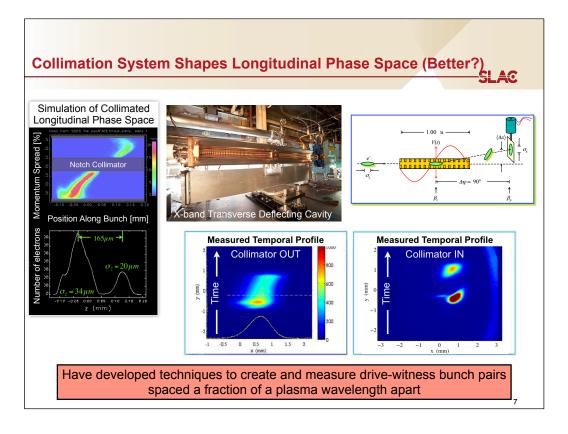
- 50 GeV/m fields, stable over cm
- High quality <µm emittance beams created and accelerated in the plasma


Beam Driven Plasmas:

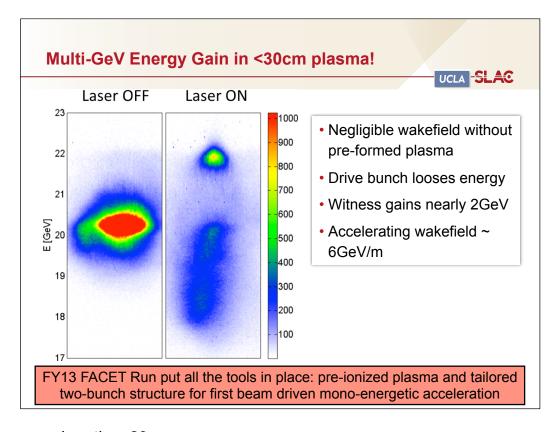
- 50 GeV/m fields, stable over meter scale for electrons
- Drive/witness bunches injected for stable acceleration over 30cm with narrow dE/E



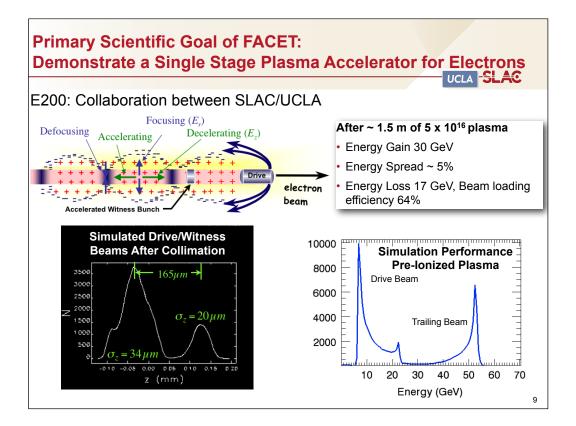
Built by DOE, operates as a user facility but with primary purpose to study beam driven PWFA

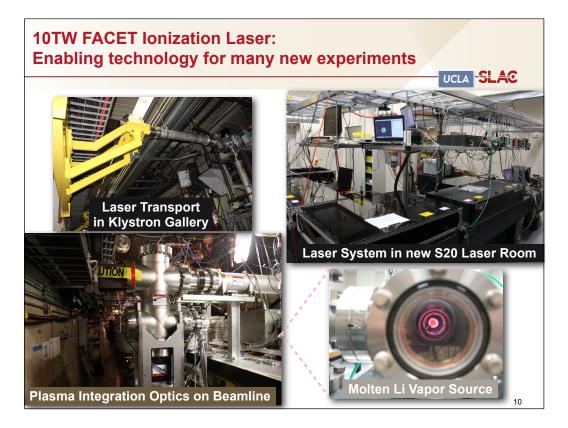

Need to introduce idea of vapor inside hot zone, buffer outside (ON/OFF condition)

Head erosion that depends on parameters like emittance and ionization energy – we will study these experimentally while complete the laser



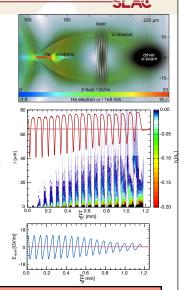
Splitting/collimating the bunch reduces the peak fields so for maximum efficiency/interaction we want a preformed plasma.


A couple years ago no one knew how to make the plasma we needed for these experiments – Developed at UCLA


Started with E200, now available to all

Plasma length and width TBD so we say less than 30cm

This is where we hope to be in a couple years

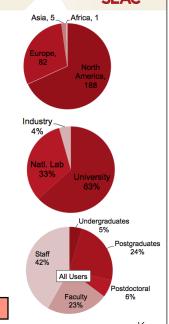

No commercial company could deliver this in this kind of time

The Future: The next Few Years Expanding Plasma Collaborations and Directions

- Trojan Horse Plasma Wakefield Acceleration
 (UCLA/SLAC/Tech-X/MPI/HHU)
- Study of the Self-Modulation of Long Lepton Bunches in Dense Plasmas and its Application to Advanced Acceleration Techniques

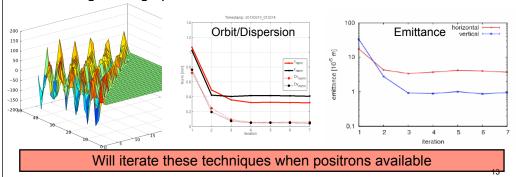
 (IST/MPI/SLAC)
- Investigation of Hot Plasmas and Fourier Domain Holography of Plasma Wakes
 - (Duke/SLAC/U.T. Austin/UCLA)
- Density Downramp Injection
 - (DESY/SLAC)
- Helmholtz VI for Plasma Acceleration

Facility upgrades like the laser are enabling additional programs that will accelerate progress and increase FACET science output



FACET Operates as a National User Facility

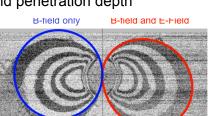
- Diverse and growing user community
- 1/3 from outside U.S.
- Majority from Universities
- Strong educational component
- Delivered to 6 experiments in 2013
- 8 experiments scheduled this Fall
- 13 experiments scheduled for 2014

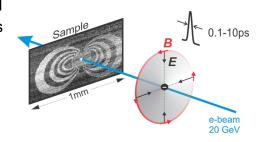


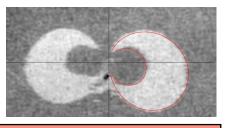
8 new experiments proposed at July'13 User meeting

E211: Beam-Based Alignment tests at FACET Dispersion-free Steering (DFS) proof of principle (500m) SLAC

- Algorithms predict can correct dispersion and as a result preserve emittance in ILC type linac
- Has never been demonstrated in long linac without e- & e+ together
- Need a long linac to test
- Experiments at FACET will understand limitations of this technique with single charge particles – critical item for ILC




E202: E-field, Spin Dynamics and Switching Mechanisms in Ultrafast Electromagnetic Pulses


-SLAC

Intense E-, B-fields from compressed FACET bunch access unique physics

- Studying different materials and geometries
- Quantify torque ratio, damping times and penetration depth

Surprising results from thick films – switching penetration beyond a skin depth points to new physics

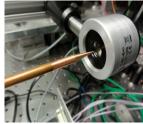
E206: Intense THz for Diagnostic & Pump-probe Applications

1.2 (a)

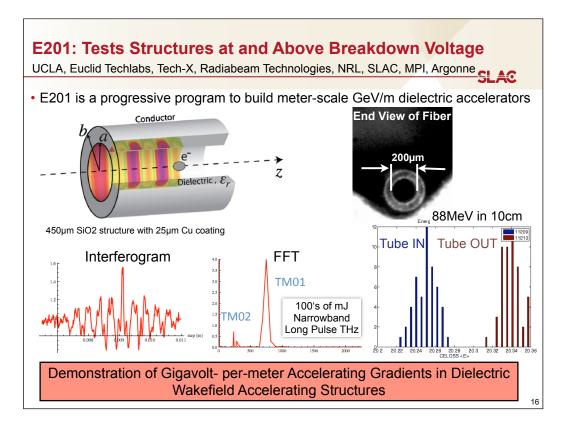
1.3 For points >= 10% of peak

8.6 For points >= 10% of peak

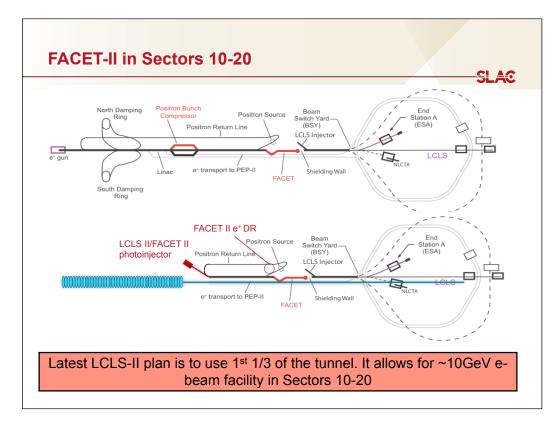
1.5 Gaussian


1.5 Gaussian

1.5 Frequency


- THz interferometer can passively monitor longitudinal profile
- Developed and operates parasitically to main programs

- Single FACET bunch produces ~ mJ broadband short pulse THz from CTR
- Focused THz creates fields approaching V/Å



Developing techniques to transport and focus intense THz pulses for users

- Multimode excitation with single bunch, 70J (100's of mJ THz!)
- High-power (~10MW), narrowband THz source
- Preservation of structural integrity and cladding at high gradient (>200MV/m)

SLAC is now considering an alternate approach to LCLS-II to meet highest priorities for the future as discussed in BESAC report. This represents a great opportunity for FACET-II

List of Contributors

-SLAG

Brookhaven National Laboratory: V.

Litvinenko, E. O'Brien

CERN: A. Grudiev, A. Latina, G. de Michele, D. Schulte, F. Zimmermann

DESY: B. Hidding

Duke University: M. Ahmed, H. Gao, S.S. Jawalkar, H. Weller, X. Yan, Q.J Ye

Jefferson Lab: A. Sandorfi

Lawrence Berkeley Lab: M. Zolotorev Lawrence Livermore National Lab: A.

P. Tonchev

Los Alamos National Lab: B. Carlsten, M. D. Di Rosa, J.

Langenbrunner

Max Planck Institute: P. Muggli

MIT: A. M. Bernstein

SLAC National Accelerator Laboratory: E.R. Colby, J.P. Delahaye, H. Durr, J.C. Frisch, B. Hettel, M. Hogan, Z. Huang, A. Lindenberg, R. Noble, H. Ogasawara, C. Pellegrini, N. Phinney, J. Seeman, W.E. White, V. Yakimenko, D. A.

Yeremian

Temple University: B. Sawatzky Tsinghua University: Wei Lu UCLA: W. An. G. Andonian. C.

Clayton, C. Joshi, K. Marsh, W. Mori,

J. Rosenzweig

University of Saskatchewan: R.

Pywell

University of Virginia: B. Norum Yale University: N. Cooper, M. Gai,

V. Werner

52 researcher from 17 institutions supported by at least 9 different funding agencies

18

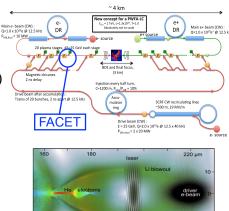
breadth of the potential research program makes FACET II truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. No other test facility has attracted such broad interest across so many branches of the Office of Science.

An international group of high energy physicists are interested in using it as a foundation for the world's the first photon collider. Nuclear physicists have proposed using the unprecedentedly high intensity gamma beams to study the structure of nuclei and as a novel particle source for future colliders.

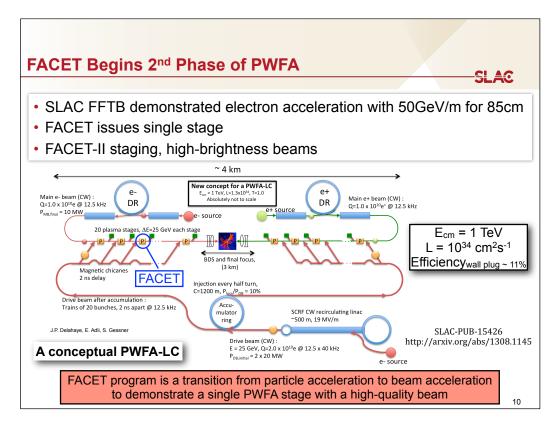
Three Parts of FACET-II Science Case:

-SLA

High gradient acceleration (Plasma Wakefield acceleration)


• Up to **1000x** improvement in gradient

Extreme **brightness** beam generation (Trapping in Plasma Wakefield acceleration)


• Up to **1000x** improvement in emittance

High flux of **gamma beam** generation (Compton Backscattering)

- Up to 100x-1000x improvement in monoenergetic gamma flux at 10MeV-5GeV
- Up to **10,000x** improvement in total gamma flux at up to 5GeV

FACET-II is a user facility based on high energy high brightness beams and their interaction with plasma and lasers

'Compact' TeV collider using mostly conventional technology

Heart is the high gradient, high efficiency plasma accelerator module – study the physics of these at FACET, FACET-II

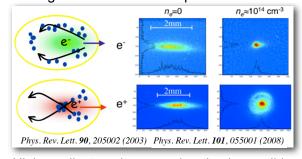
Remaining Challenges for a PWFA-LC

-SLAG

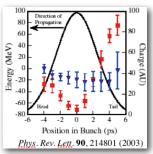
The concept for the PWFA-LC highlights the key beam and plasma physics challenges must be addressed by experimental facilities such as FACET. A reasonable set of design choices for a plasma-based linear collider can benefit from the years of extensive R&D performed for the beam generation and focusing subsystems of a conventional rf linear collider. The remaining experimental R&D is directly related to the beam acceleration mechanism. In particular the primary issues are:

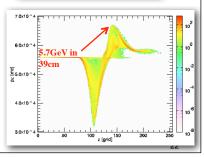
Positrons, beam quality, efficiency, and staging

mitigation of effects resulting from plasma electron collapse


- Average bunch repetition rates in the 10's of kHz (required to achieve luminosity)
- Synchronization of multiple plasma stages to achieve the desired energy, and
- Optical beam matching between plasma acceleration stages and from plasma to beam delivery systems.

Answering these questions requires dedicated test facilities like FACET & FACET-II


Positron Focussing and Acceleration



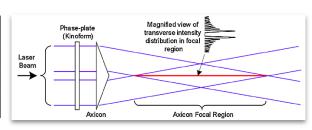
Focusing and acceleration of positrons has been characterized at low densities

- High-gradient positron acceleration is possible
 Can use wake of an electron or positron beam
- Need to iterate plasma source to minimize emittance growth but preserve high-gradients (hollow channels)
- FACET will make first tests of high-gradient positron acceleration in the next couple years

Hollow Channel Plasmas -SLAC · Beam propagates down the axis in no plasma Plasma • Plasma wake from inner sheath of channel No - Acceleration Plasma - No focusing (no emittance growth) Longitudinal Field Plasma Uniform longitudinal fields 250 300 350 400 450 500 150 200 Focusing Field (for Positrons) 0.1 (W_W) 0.05 (W_W) -0.05 B - 1.0-1 Plasma E ⊐. 50 No focusing fields on axis No Plasma 250 Electron beam driver 2D Osiris Simulations Run on Hoffman2 Cluster at UCLA 23

Hollow Channel Plasma Experiments at FACET

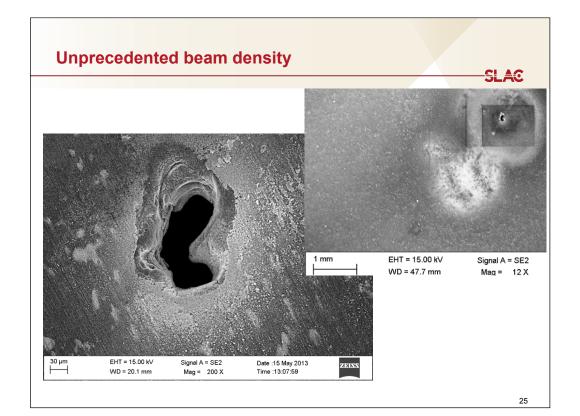
Kimura et. al. propose using a high-order bessel beam to create an annular ionization region in the gas. See also:

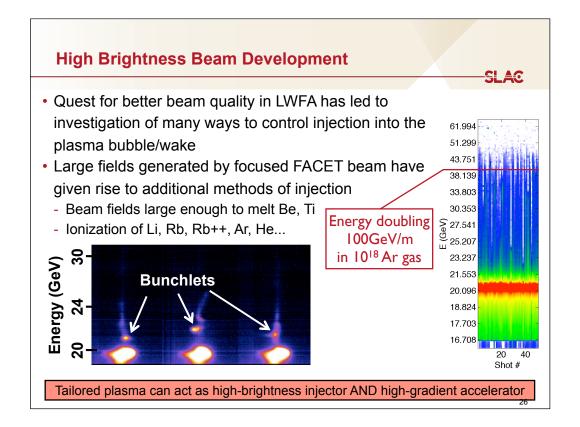

- J. Fan et. al. J. Fan, E. Parra, I. Alexeev, K.Y. Kim, H. M. Milchberg, L.Ya. Margolin, and L. N. Pyatnitskii, Phys. Rev. E 62, R7603 (2000).

- N. E. Andreev, S. S. Bychkov, V.V. Kotlyar, L.Ya. Margolin, L. N. Pyatnitskii, and P. G. Serafimovich, Quantum Electron. 26, 126 (1996)

HYSICAL RE	EVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 041301 (2011)
Hollov	w plasma channel for positron plasma wakefield acceleration
	W. D. Kimura*
	STI Optronics, Inc., 2755 Northup Way, Bellewe, Washington 98004, USA
	H. M. Milchberg
Institute for Phys	ical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
	P. Muggli and X. Li
	University of Southern California, Los Angeles, California 90089, USA
	W.B. Mori
U	Iniversity of California at Los Angeles, Los Angeles, California 90024, USA

Laser/Kinoform Parameters


Power	1 TW (300 mJ/ 300 fs)				
F kinoform	1.6 cm				
Bessel Mode	5				
"Axicon Angle"	1°				



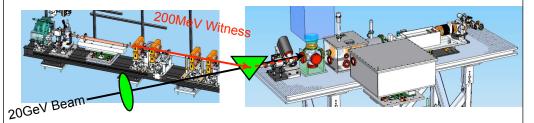
Plasma Parameters

Density	1 × 10 ¹⁷			
J₅ Peak	46 µm			
Plasma Start	40 cm			
Plasma End	91 cm			

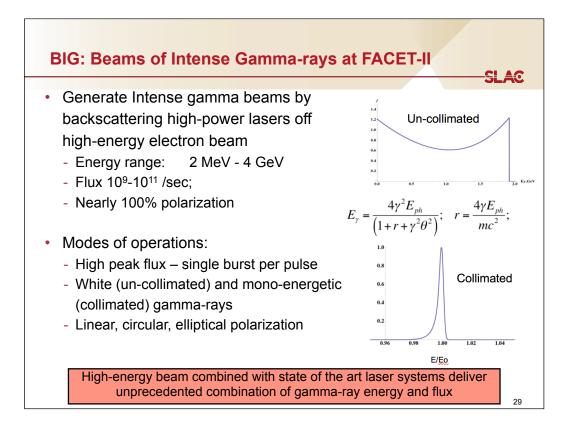
Positron Systems will re-commission this Fall with first experiments in 2014

Applications Go Beyond HEP Drive Beam Plasma Based FEL Concept Charge Energy 500 MeV Resonant Wavelength ~ 5Å Rep Rate 1MHz Bunch length 210µm, ramped Saturation Length ~ 6m 8.5kA Peak Current Cryogenic Undulator Normalized Emittance 2.25 mm-mrad Short gain length Trojan Horse (plasma) Plasma Density 10¹⁷ e⁻/cc Plasma Length 20 cm Trojan Horse Plasma Transformer Ratio **High Energy AND High Brightness** Trojan Horse (beam) Charge 3 pC Energy 2.5 GeV Triangular Current Profile 2x10⁻⁴ Energy Spread Normalized Emittance 3x10⁻⁸ m-rad Large Amplitude, High Peak Current 300A Transformer Ratio Wake T ~5 Bunch length 12 fs Brightness 7x1017 A/m2rad **Undulator Parameters** Drive Beam Period 9 mm Gaussian current profile Compact, efficient, mature technology Number of periods (N) 660 Radiation Parameters Wavelength 5.4 Å 50 μJ Single pulse energy NC or SC Linac Number of Photons >1011 $E_0 \sim 500 \; MeV$ Peak Power FACET-II has the opportunity to develop next-generation light sources using plasma accelerators as drivers, and to test novel concepts.

Staging Will Be Required to Reach Very High Energies


SLAC

Upstream of stage:


- Inject high-brightness witness bunch from independent source
- Investigate tolerances on timing, alignment

Downstream of stage:

- Extract/Dump spent drive beam
- Preserve emittance of accelerated beam

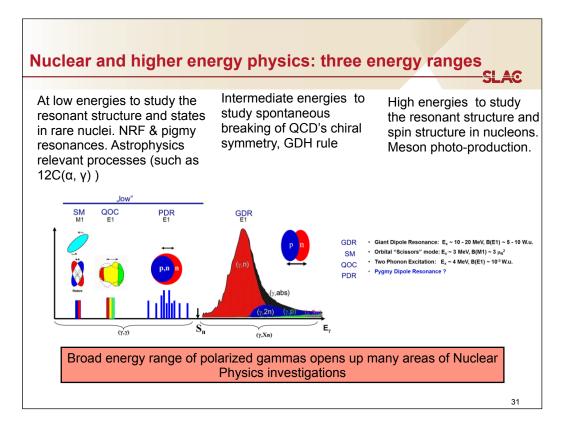
FACET-II has all the tools to investigate staging multiple plasma cells together as desired for very high energy applications

Energy resolution due to high brightness of the beam

Source brightness proportional to geometric emittance and with 10µm. For given photon energy need combination of beam energy and photon energy, with longer wavelength light, use higher E beam and thus lower geometric emittance and higher brightness

10μm with 100mJ same # photons as 1μm and 1mJ

Comparing BIG with other Compton Sources SLAC Name **ROKK** GRAAL LEPS HΙγS BIG Novosibirsk, Grenoble, France Harima, Japan Location Durham, US Menlo Park, US Russia Accelerator VEPP-4M **ESRF** SPRING-8 Duke SR SLAC 6 8 1-10 e-beam, GeV 1.4 - 6 0.24 - 1.20.001-2 (5) 0.1-1.6 0.55-1.5 1.5-2.4 0.001-0.095 γ-beam, GeV best γ–energy 0.8-10 0.1 1-3 1.1 1.25 resolution, % Maximum total 10^{11} 3 x109, E<20 MeV 10^{6} $3x10^{6}$ $5x10^{6}$ (10^{10}) 2 x108, E>20 MeV flux, γ/sec

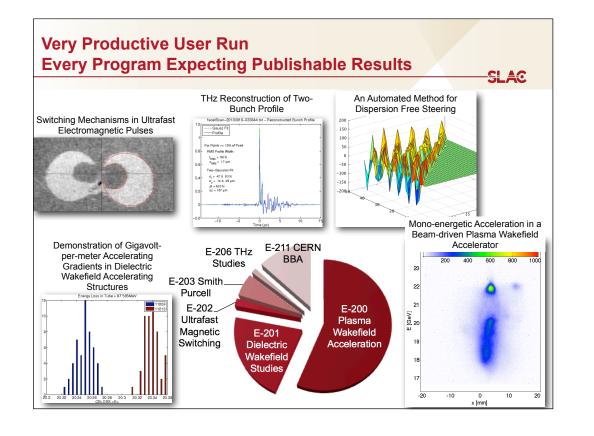

BIG is a superior source:

- Few thousand-fold γ-ray energy span from MeV to GeV
- About 10-fold better energy resolution
- · Orders of magnitude larger flux

Unprecedented intensities and unique time structure open new opportunities in fundamental and applied research

30

Linac is advantageous since can interact with large percentage of the beam electrons (10%) unlike rings that have to limit beam disruption = lifetime issue


NP passionate about access to high energy gammas at Higgs (sp?) at Duke but cannot reach required energy and flux (decades long program)

From FACET Proposal:

The nuclear dipole response covers a range of structural phenomena, as shown in Figure 2-24. Physics themes involving electric and magnetic dipole distributions, which can easily be separated making use of the polarization of the photon beams, range from the study of isospin purity of states, to the emergence and evolution of nuclear quadrupole and octupole collectivity, and the build-up of nucleon skins. The best-known dipole excitation is the giant dipole resonance (GDR), which is typically found at energies around 15 MeV, well above the neutron-separation threshold. On the low-energy tail of the GDR another structure has been identified in a small set of nuclei, as mentioned above. This enhancement of strength around or below the neutron-separation threshold, referred to as Pygmy dipole resonance (PDR), is typically interpreted as the effect of a neutron skin building up around a proton-neutron symmetric core. The lowest part of the electric dipole response, at few MeV excitation energy, is dominated by multi-phonon excitations involving the octupole degree of freedom. The latter requires a short bursts of γ -rays natural for BIG's time structure. In either case, the enhanced, collective electric dipole strengths at low energies are a challenge to nuclear theory, since they can usually only occur due to particle-hole excitations across a major shell.

Facet-II beams

Facet-II beams SLAC									
Injectors	Beam	Enero [Ge\	7	ε _{NX} x ε _N μm x μ	• •	$\sigma_X x \sigma_Y$ [µm x µm]		σ _z x ΔΕ/Ε [μm x %]	
The analysis	3nC e⁻	10		30 x 3		20 x 20		20 x 1	
Thermionic	1.5nC e+	10		30 x 3		20 x 20		20 x 1	
	20pC e⁻	10	10 0.		.1	1 x 1		2 x 1	
Distriction	1nC e⁻	10		1 x 1		3 x 3		5 x 1	
Photoinjector	6nC e⁻	10		5 x 5		10 x 10		20 x 1	
	3nC e⁺	10		30 x 3	3	20 x 20		40 x 1	
Witness photoinjector	0.1nC e ⁻	0.1		1 x 1		50 x 50		20 x 0.1	
Lasers	Energy / Power [Joule / TW]		Rep [H:		т [fs]		λ [μm]		
TI: Sapphire	1 / 30	120) 3		30		0.8	
CO ₂ laser	0.1 / 0.1	12		0 10		1000		10.2	
Gamma beams (Inverse Compton)	Energy [GeV]	Inte	ensity		ep rate [Hz]	e σ _χ x σ _γ [μm x μm]		σ _z [μm]	
TI: Sapphire	1.8 GeV 10		010	120		5 x 5		10	
CO ₂ laser	150 MeV		10 ¹⁰		120		5 x 5		

Science/User Perspective

FACET is living up to its' potential and performance and machine performance is exceeding expectations

FY13 Run demonstrates the importance of doing experiments:

- Ionization of Ar, He not expected and would have missed opportunity to investigate ionization injection
- Cannot properly simulate ionization injection even on most powerful computers
- FACET offers unique opportunity to demonstrate emittance preservation in long linac

Word is getting out and new proposals coming in – anticipating great user meeting next week

It is a very exciting time for beam driven wakefield accelerators!

- · Dielectric structures finally breaking the GeV/m barrier
- Optimistic we will see demonstration of high-gradient meter scale plasma stage within the next year with good beam quality and efficiency
- Coming years will build on this with injection and higher brightness beams paving the way for the first applications

