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Cosmic Rays are Pervasive
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Tools & Systems

* Direct probes
* |n situ particle detectors
* Telescopes from radio to y-ray
* v detectors

* Indirect probes
* Astrochemical modeling
* Geology

* Natural and lab plasmas
* Space & solar
e Diffuse and HED



Energy Spectrum !
*A broken power law: )
N(E) ~E27, Epy <3 T
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Properties

Energies and rates of the cosmic-ray paricies
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(An)Isotropy

Left: The distribution of cosmic ray arrival directions is highly isotropic, up to the knee.
Right: Weak fluctuations at TeV energies have been discovered recently & challenge theory.
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Cosmic Ray Acceleration

Blue: x-rays ... . .

'\

Curved shock front
(red), fluid flow in
frame of shock (black
S e arrows), magnetic

".' .‘ HeEE fieldlines in purple.

NASA image



Diffusive Shock Acceleration

'
Particles are scattered back and — Maximum E is set
forth across the shock by A by shock evolution
waves and turbulence they ’ ) & geometry.
generate themselves, resulting # F >
in a power law spectrum that ¢ ' <

depends on the shock ,‘
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Overarching Questions

 How does 107 of interstellar particles come to
have as much energy as the thermal pool?

— Observational probes
— Acceleration & propagation Processes

* How does this virtually collisionless
component interact with the thermal gas &
magnetic field?
— Kinetic instabilities
— Fluid treatments



Extend to Other Galaxies
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Fits to the y-ray spectrum of M82: Left is best fit to y-ray spectrum,
Right is best fit to radio spectrum. Milky Way-like assumptions about
cosmic ray acceleration produce good fits (Yoast-Hull et al 2013)



Breakdown of Equipartition

Cosmic Rays in Arp 220

TABLE 2 Yoast-Hull | et al. 2015

ENErRGY DENSITY DISTRIBUTION IN GALAXIES

Supernova Average Gas  Cosmic Ray  Radiation Field Magnetic Field Magnetic Field
Power Density  Energy Density Energy Density Energy Density  Strength

(egyr?)  (m¥)  (@Vemd) (Vemd)  (Vem™) (uG)
Milky Way 2% 10% 1 14 03 09 6
M2 7x10% 550 250 1000 1800 250
Arp 220 Fast 7x 109 17,000 1300 40,000 220,000 3000
Arp 220 West CND  1.3% 10 90,000 3500 440,000 §90,000 6000

NOTE. — Values for the Milky Way are taken from Table 1.5 in Draine (2011). For M82 & Arp 220, the values for the
cosmic ray & magnetic field energy densities taken from our best-fit models (see Section 3 above and YEGZ).



Milky Way Central Molecular Zone
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(a) Model A, Soft Electron Spectrum (b) Model A, Soft Proton Spectrum

Soft electron spectrum over produces radio; soft proton spectrum requires huge
energy input. From Yoast-Hull et al. 2014.



Coupling to the Thermal Gas

Collisional Collisionless
* |onization * Momentum & energy
— Heating exchange mediated by the
— Chemistry ambient magnetic field.

e Radiative Processes

0
— y-rays from i decay & Fermi, Parker, Kulsrud

inverse Comption
— Bremsstrahlung

* Light element production

The subject of this talk



Plan of This Talk

Motivation
Classical Cosmic Ray Hydrodynamics

Generalized Cosmic Ray Hydrodynamics
— Justification for approximate treatments?

Beyond Alfven Waves
— Going to extremes

Unfinished business



Galactic Winds: One Motivation

%10’ Polytropic, Transonic Solutions

Solid lines are velocity
Dashed lines are sound speed
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Cory Cotter & Chad Bustard

Steady, spherically
symmetric, pressure driven
outflow a la Chevalier &
Clegg 1985 but extended.

(Bustard, EZ, D’Onghia 2015)

Relativistic fluid cools more
slowly & drives a faster
wind.



Milky Way Wind
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Top left: Soft x-ray sky, §
Bottom left: Magnetic flux tube geometry. g

Top right: Domains of flow, with mass loss rates

Bottom right: Gas temperature with & without
cosmic ray heating.
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Recent Simulations of a Star-Forming
Disk
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Left: Initially toroidal magnetic field, no cosmic rays. Right: With cosmic rays. Ruszkowski,

Yang, EZ in preparation.



Perpendicular Dynamics are Easy

Cosmic ray force balance:

J.x B

C

V_Rr —

Lorentz force on thermal gas: J, x B/c

Pressure gradient introduced
through Lorentz force

JxB J.xB

C C

C 2XB g p

C




Parallel Dynamics are Subtle



Gyroresonant Scattering

Gyroresonant fluctuations (Doppler shifted
frequency kv, e = ©,,) scatter in pitch
angle cos™! .

Orbits follow
fieldlines and
short wavelength
fluctuations average

out.

resonant/,

-5+

nonresonant ~
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Gyroresonant Streaming Instability

_ mg*v of (kv )laf
= 2: koptw)u(1—u2) |2 g 2
5 o2 /5w vutw 1) 6p+ T 3 dpdp,

T damping

resonance

excitation by anisotropy

Simple approximation to the growth rate:

Fcr ~ chz (22 - l)
T VA

Here & elsewhere I’'m interested in the bulk
cosmicrayswy~1



Fokker — Planck (F-P) Equation

Back reaction of waves on zero order cosmic ray distribution function f,

(flft“z_ 'q E1+KUXB1 -V, /i
m c

— V,,- D ' fou.

Pitch angle scattering (D,,,) dominates:

Small angle
Scattering by
neartj Feriodic
random
Scattering frequency v ~ w_(0B/B)? [rpha\sed wvave_s

D,,=D,,are order (v,/c) D, is order (v,/c)?



Energy Equation

Multiply F-P eqn. by particle energy € &
integrate over momentum space:

oU +V-W, = / dwdk2l . (w, k)1 (w, k)

/NN

Energy density Energy flux Energy transfer to waves




Frequent Scattering Approximation

Relate anisotropy to spatial gradient:

af of v(l —p?)df
Du#a—: + Dup 81;) - 2 820

Energy equation simplifies to:

oU. .
Bt(- T V ' WC — VA" VR‘

“frictional heating”



Equation for Waves

From Dewar’s theory:
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Fluid Treatment

e “Classical Cosmic Ray Hydrodynamics (CCRH)

— Equations developed by Volk & collaborators based
on self-confinement model

— Stream down pressure gradient at v, relative to
thermal gas (care needed in implementing this).

— Transfer momentum through pressure gradient
- Heat gas at—v,grad P_.
- Diffusion along B with diffusivity K ~ v2/v
* Applied to shocks, galactic winds, ISM heating,
intracluster medium.



Approximations & Improvisations

* Include grad P_, advect with fluid, ignore
heating, diffusion if any is isotropic.

— No magnetic field calculation necessary (implicitly
stochastic on gyroradius scale).

— No need to ensure streaming is down grad P..

* Include streaming relative to thermal gas &
frictional heating, but replace v, by thermal
sound speed v..

— Same advantages as previous bullet.

These are kEhe main varianks in the Literature




Generalized Cosmic Ray
Hydrodynamics (GCRH)

* Account for non-cosmic ray sources of waves.

7]
s, ¥,

MHD turbulence, Boldyrev
group

* Generalize F-P equation to include waves
traveling in both directions.



From Fokker-Planck Equation

* Composite streaming velocity

V, — V_
w = VA
Vy + V_

* Pressure gradient force is unchanged



Wave Evolution Equations

= vy VP, -G+ L+
/ 2,T /
W= = 0B (iv 4+ u) cosmic ray

driving/damping

extrinsic
driver



Balance Driving & Damping

‘Sim!ai.e model

B P,
A= Vae VPcr,

E, P, E
B+ B 1. oTE., + 5 = 0,
E P, E

< _9TE_ + — = 0.
E+ + E._ TA + 2

This is easily solved




Transport Velocity

w -> 0 when external driving dominates
w -> v, when cosmic ray driving dominates

Cosmic ray heating is reduced but
compensated by turbulent damping



Extrinsic Turbulence Model

* Advect cosmic rays at e But, Alfven turbulence
the fluid speed v. produces anisotropic,

* Neglect cosmic ray field aligned diffusion.
heating. e |sotropic diffusion is

e Retain pressure produced by a small
gradient force. scale, stochastic field.

All hold in the limit of
strongly driven, balanced
turbulence.



Beyond Alfven Waves — High 3
. For B=Ps/Py, >>1
|

* Affects waves which
| scatter cosmic rays with

> U

| Uy nl/2
e ~y — -
H C

]  Demands very weak
] fields, e.g B< 102G in
galaxy clusters.

10

Enforces sub-Alfvenic streaming



Nonresonant Instabilities

* When U_/Ug > c¢/vg
there 1s a new,
nonresonant instability

.=->‘ Magnetic Fleld Strength Too Large 'g

. § for Non-Resonant Instabllity =

driven by the electron Loo( B :

0ggol - g

Magnetic i 5

current that R | :

compensates the cosmic " :

ray current. £ e -

* Conditions are met at Logq[ Cosmic Ray Flux]

shocks, and possibly in Evereyy & EZ 2010

young galaxies.



Diffusive Shock Acceleration

'
Particles are scattered back and — Maximum E is set
forth across the shock by A by shock evolution
waves and turbulence they ’ ) & geometry.
generate themselves, resulting # F >
in a power law spectrum that ¢ ' <

depends on the shock ,‘
compression ratio. '
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Rapid Growth to Nonlinear Amplitude

nonresonant PIC simulation showing magnetic field growth
resonant in a shock layer.
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Riquelme & Spitkovsky 2010
Linear growth rates (Zweibel & Everett 2010)



Beyond Alfven Speed

e Resonant instabilities enforce sub-Alfvenic
streaming & require extremely weak fields.

* Nonresonant instabilities require large cosmic
ray fluxes

— Growth rates comparable to frequency require
nonstandard treatments

— Could be very interesting in weak field situations.



Summary & Prospects

* Cosmic rays appear in diffuse plasmas
everywhere, in defiance of thermodynamics.

 They exchange momentum and energy with
the background medium, mediated by
magnetic fields.

* Advances in observation, computation, &
experiment make this a wonderful time to

study their acceleration, transport, and
feedback.



