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What is a micro cavity plasma array?

= An symmetric and uniform assembly of hundreds to
thousands cavities

= Cavities: Dimensions in the micrometer range (~100um)

= Different shapes (quadratic, cylindrical, inverted
pyramidal,...)

Fig.1) SEMs of a single cavity and a segment of an array with inverted pyramidal cavities
= Cauvities can be engraved in various wafer (silicon, glass,

ceramic, ...)

= All cavities are operated with the same excitation
—> Discharge in the cavities can be compared
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Fig.2) Photograph of a silicon-based array
[1] G. Eden et al. J. Phys. D: Appl. Phys. 38 (2005) 1644-1648 with four different cavity structures DBD [2]
[2] M. K. Kulsreshath et al. Plasma Sources Sci. Technol. 23 045012 (2014)
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Silicon-based array devices Suair (100, POV

(grounded) Si,N,

/ polyimide
= Developed by group of G. Eden [2] \ ya
= Silicon-wafer contains an array of cavities

= Silicon-based devices are produced by micro-structure
technique

- =
100 um
Fig.3) Sketch of a silicon-based array device developed by G. Eden [1]

LYY 100 150 pm
+ |‘—'| Nickel
.r- L é— S0,

= Measurements with very changeable conditions () -
(pressure, admixture,...) silicon (500 um)

—>Integration and subsequent analysis of individual
components are difficult

i

—>These devices reach their limits | \_ Gold

—~>Long-term spectroscopy is not possible B

— 1 100 -150 pm
. I'—'I Nickel
O —£,— Si0;
()
= |s there an alternative? e —
| \— Gold
[1] G. Eden et al. J. Phys. D: Appl. Phys. 38 (2005) 1644-1648 Fig.4) Sketch of a silicon-based array device developed at GREMI in France [3]

[3] R. Michaud et al. Plasma source Science and Technology 24 (2018)
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Metal-grid array device

aperture

d;=200 um d,=150 pm
nickel foil

d;=100 um

d,=50 pm

dielectric

N

glass case
plastic carrier magnet -
gas inlet gas outlet

= This device is built like a sandwich: magnet,
dielectric, metal grid

Grid consists four different cavity structures
- Automatic diameter variation at same condition

mounting

Fig.5) Sketch of a metal-grid array with exchangeable components

= Structure is enclosed with a glass case

—>Optical access and gas flow operating system

= Foil and dielectric can be changed easily
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Metal-grid array device - dismountable

Due to the magnetic holding, the device is dismountable in its
components

That allows to change the components (properties)
—>Dielectrics (glass, aluminum oxide, zirconium oxide, ...)
—>Dielectric covered with a catalyst (manganese oxide,...)
—>Grid (cavity diameter and spacing, trenches, channels, ...)

After operation and treatment, components can be removed
for surface investigations (LSM, XPS, ...)

How does the plasma interact with the surface or especially
with the catalyst?

cm? 0,2 mg/cm? 0, ' mg/cmu
Fig.7) Dielectric covered with catalyst
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Investigation of the used dielectric

Dielectric can be investigated after operation

o o . " h‘ 5
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Fig.8) Photograph and microscope recording of a used and covered dielectric [3]

Here: XPS and microscope recordings

A\

Black colored and cavity shaped pattern is covered on the

dielectric 35 —— T
3,0
= XPS: Black structure consists of nickel from the grid 2,5 -

2,0

15

Courfts/s

1,0

0,5

0,0
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Fig.9) XPS spectra of an used dielectric after operation

[3] Sebastian Dzikowski et al. PSST 29 035028 (2020)
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Metal-grid array device - Comparablllty

SBA U=330 Vo © SBA, U=400 V-« |'°
. - . . 200 198 200t 190 198
= Metal-grid and silicon-based array differ in setup los los
and structure 0 0 10
104 0.4
- Can they be compared with each other? 200 20] ,  00f 20],,
2-_4003)—J 100 400 40_00% g
i L ) | | ' | | ' =
= Ul-characteristic and photomultiplier signal were ® ° ® ” " o ’ ” " " .
. = T T T T T T @ 2
400 + 400 -
detected for both devices 9 PHP MGA, U=350 V/© 1'° | MGA, U=390 V-« | % |5
200 F 108 200 —DBOE
420 20
= Avoltage increase leads to several pulses . ' . 1%, 100
1 104
200 L : 120],, 2001
= Each pulse represent an ionization wave that ! 140100 [N
400 _c) I : I Y- -400 _d) I I I - : - Discharge cument
travels along the array surface i -~ - - v : - = o =
Time [us]

Fig.10) Ul-characteristic and photomultiplier signal of a metal-grid and silicon-based array [3]

[3] Sebastian Dzikowski et al. PSST 29 035028 (2020)
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Metal-grid array device — Wave character

Phase-resolved imaging with an ICCD-camera
within emission pulse

—->Time resolution of 200 ns

Not all cavities operate at the same time

- An ionization wave travels from bottom left to top
right

->v=10 km/s

—>Wave occurs independent of the polarity of siiiiiiil
applied voltage

Metal-grid und silicon-based devices show this
behavior

—~>Can be compared

Fig.11) Phase resolved images of an ionization wave traveling along the array’s surface [3]

[3] Sebastian Dzikowski et al. PSST 29 035028 (2020)
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Metal-grid array device — Asymmetric discharge
IPP DPP

Discharge shows an asymmetric behavior for
positive and negative applied voltages

> 9%

IPP: Discharge prevails at the edges outside the
cavities

- Electrons are accelerated outside

9AI1309ds19d uo-peaH

B N B

- Ring structure

|

DPP: Discharge takes place rather centered inside
the cavity

—>Electrons are accelerated to the dielectric

->Dot structure

Observable again for both devices

9A10adsiad 3uizelo

Fig.12) Asymmetric discharge behavior of a metal-grid and silicon-based array [3]
[3] Sebastian Dzikowski et al. PSST 29 035028 (2020)
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Motivation — Electric field

= DBD with a pore in one dielectric was simulated [1]
= High densities and electric field are inside the pore
- Great conditions for catalysis
- Charged particles can be controlled

= Strong dependency on pore diameter and applied voltage

—>Both parameter can be changed and controlled in a micro
cavity plasma array

= Electric field strengths were never measured before on an
array

= How to measure?

[4] Yu-Ru Zhang et al. Applied Catalysis B: Environmental 185 (2016)

Powered electrode

Dielectric layer

1mm
<—— Discharge region

Discharge region
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2\ | /
/ <—— Dielectric layer
<>
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Grounded electrode

Fig.13) Sketch of the used DBD in simulation [4]
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Fig.14) Electric field and electron density in the simulated DBD [4]
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Electric field — How to measure

= Alot of optical methods are available for measuring the
electric field

= BUT: Not every method is applicable to arrays

= Laser based methods

—>No optical access to the inside of the cavities (strong field
strength)

= Nitrogen based methods

—~>Relative intensities of the second positive and first
negative band of nitrogen

—>Admixture influence discharge

—>Further plasma parameters (EEDF, ...) are necessary and
unknown for the arrays

E [kV/cm]
100

75

height [um]
8

N
(%)

-90 -60 -30 0 30 60 90
width [um]

Fig.15) Applied electric field inside the cavity [5]
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Fig.16) Optical diagnostic tools on a MCPA
[5] Simon Kreuznacht, PSST, submitted
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Electric field — Stark effect e
= Strong electric field = Stark splitting of atomic lines z ! forbidden allowed |
= Here: He 492,19 nm line © ol
= Advantage: Method is based on quantum mechanical, no 00
further plasma parameters o2l - - L J

Wavelength [nm]

Fig.17) Recorded spectra of the split 492 nm line
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[6] J. S. Foster et al. Proc. R. Soc. Lond. Ser. A 117137 (1927) Fig.18) Profiles displacement depending on the electric field [6]
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Experimental setup and diagnostic

cooler
= Plane grating spectrometer (PGS) for l T trigger signal
high resolved OES " ceD-
= ICCD-camera is synchronized plane grating spectrometer camera | T
= PMT for temporal evolution of the
emission

light fiber

= Light fiber can be shifted along the
cavity structures

stage ~_
[ | =
— B
«— collimator
4 . aperture
: i @ ==
MFC = T =
MCPA

Fig.20) Sketch of the experimental setup
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Electric field — Asymmetric discharge

IPP DPP .
600 IPP L 10
LR B B ] ’
* H» & 2 400 o8
e ® 2 2 §
200 >
% & "2 >, - 0,6 O
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s e enw : > 01 =
perspective = o
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Fig.21) Phase resolved images of the asymmetric discharge Fig.22) PMT-signal depending on the applied voltage
Asymmetric discharge behavior in positive How does the electric field differ?
potential phase (IPP) and negative potential First: Time integrated measurements for
phase (DPP) PPS and NPS

IPP: Ring-structure outside the cavities
DPP: Dot-structure inside the cavities
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Electric field — Cavity diameter variation

All four cavity structures are operated under same

T T T T T T
conditions 7ofF ¢ i
60F © .. -
= 700V = |
E 50 |- ~ -
= 15 kHz < o TT--__ .
m T 40 Tt
2 sim o " . s
Laof © e T o -
" do:S trend, but val diff t uij " mpolarized, [PP
T and o : Same trend, but values differen 20L @ opolarized, IPP 1
L - — - Average, IPP
10L @ n-polarized, DPP i
i i 11 | © o-polarized, DPP
= Small intensity for the 50 pm cavities S -Remgeore
100 120 140 160 180 200
= IPP: Nearly constant Cavity diameter [um]

* DPP: Decreasmg with Increasing diameter Fig.23) Measured electric field depending on the cavity diameter

= Strongest electric field at edges inside the cavity
< - discharge inside the cavity during DPP
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Electric field — Applied voltage variation
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Fig.25) Measured electric field depending on the applied voltage

SFB : : RUHR
17 International Online Plasma Seminar 2020 | Sebastian Dzikowski | Chair for Experimental Physics Il | Bochum Transient At‘m‘osphe_rlc Plasmas UNIVERSITAT R B
from plasmas to liquids to solids BOCHUM



- 30
700
Time resolved measurements on 200 um cavities 1%
>Highest intensity 2% 126 §
S 2
('5 [
S o J24 3
15 kHz g 5
=3 122 ©
2 slm o N
| 420
700 V 700
- ; ; — ; ; 18
0 10 20 30 40 50 60
. : : Time [us]
First case: Time resolution of 1 HS Fig.26) Time-resolved electric field strengths (1 pus)
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Fig.27) Time-resolved electric field strengths (500 ns)
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Electric field — Success and challenges

E [kV/em]

100

= Success

75

—> Stark effect can be applied

—>Field strengths are in a reasonable range g 50
—>Comparable to some models E’
—>Values and trends are reproducible *
—->Time resolved measurements possible .
-90 .60 230 “ 0 30 60 90
width [um]
. Challenges Fig.28) Applied electric field inside the cavity [5]
—>Fight with low intensity
—>Measurements are spatial-integrated 492.19 nm
> Emission dependent diagnostic E’ _ E’ .
Applied Applied
— — — —
ESurface EV0|UmE ESurface EVqume

Fig.29) Sketch Stark effect

UNIVERSITAT
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Radial discharge distribution — Cavity variation

= Spatial resolved measurements are not = |PP: Stronger emission at the edges for 200 and 150
possible Hm
= Camera and different filter are connected = Larger diameter €<-> discharge tends to prevails
ahead the MCPA outside
= —> radial discharge distribution = DPP: No modulation, rather a plateau for large
diameters

= Cavity diameter variation

= Same conditions as in the electric field : Rer?ult_s correspond to the asymmetric discharge
measurement behavior
Wavelength integrated, IPP Wavelength integrated, DPP
16 | —n o L I I I I —I50um ] I I I I —Sbum
: 1 12h —— 100 pm| Lor N —— 100 um ]|
L4r T I —— 150 pm| : —— 150 pm |
120 i 10} 7 200 pm) 08} 200 pm |
> i > >
w10} . @ 08} 4 i)
£ oor ] £ oot : £
g 0,6 - - g I / ] g 04 -
o I _ ] S o4l ] o
z 04l :\;\g;vi::ngt integrated ] z 4 | ] z I
[ — 777 nm ] 0,2 E 0,2 -
02 390 nm 7 L J & I
0.0 I —— 668 nm 1 0,0 oo
-0,2 - : : ' : : ] 0,2 : : ' : : : : L . .
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
, o .. Cavity : . Cavity o . . . Cavity .
Fig.30) Emission distribution IPP, wavelength resolved Fig.31) Emission distribution for all cavity diameter Fig.32) Emission distribution for all cavity diameter
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Radial discharge distribution — Voltage variation

1,35 F I | | | | +lWavleIengtlh integlrated -
= 200 pm cavities _ E =229y ® 706nm
o —A— 668 nm
1,30 —w% 390 nm 7
= |PP: Modulation decreases with higher voltage el ~¢ rirnm ]
= = The cavity is filled out with the discharge =
= DPP: Plateau is unchanged T 1201 .
3 -
S115¢ E E.=11,0 eV, E; =5,1 eV-
= Depending on both parameters the discharge changes
between the edges (high field) and center in the IPP 1,10 |- ., -
5 S i
1,05 | E.=3.2¢eV, E,=156¢eV |
= How does the profile change along the cavity height?
1’00 | 1 | 1 | 1 | 1 |
400 500 600 700 800
= Generally, more changes in the IPP, but the electric field Voltage [V]

shows a Change in the DPP Fig.33) Modulation depending on the applied voltage

= |n context of the electric field the results are still difficult to
interpret
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Microchannel device

Ni electrodes

Allows an insight in the “cavity”
= Investigative “support” for the array Dielectric

Magnet
= d=120 um &
_ _ Fig.34) Sketch of the microchannel device [5]
= For small voltage amplitudes, the discharge -400 ———————— 11— 400
ignites just at the amplitude
->No surface charges that help to ignite 2. 300 - 1300 =
= O
= For high amplitudes the discharge ignites T ool 1o0 §
already in the half period before o o
'§ -100 |- - 100 %
& &
= Same effect also detectable for the array 8 8
o 0| 40 o
- Can be compared o s
_% 100 - -100 _%
< <
200 b e 1 100
200 300 400 500 600 700

Amplitude applied voltage [V]

[5] S. Kreuznacht et al. PSST, submitted Fig.35) Ignition voltage depending on amplitude applied voltage [5]
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Microchannel device — side view images
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Fig.36) Phase resolved images of the discharge in a microchannel device from the side [5]

[5] S. Kreuznacht et al. PSST, submitted

60

120

120

-180

-180

-120

-120

width [um]

-60 0

|

-60 0

width [um]

EEEEEEEEE
TEEEEEEET

60

60

120

120

= Goal: Discharge profile in the height

€
% = |PP: Discharge takes place at the opening of
< the channel
= DPP: Discharge rather centered along the
height
g
= = Asymmetric character observable

= How does the position change?
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Microchannel device — side view profiles

. E= 2sIm N DA R
= L s 7317 s =R T
= =15 kHz L
03 | B B )
[
& o W
= |PP: Position seems to be nearly constant [ | v 14%
= DPP: Discharge center move to the (A= 1 7.5 s _
dielectric (high electric field, surface ' (YYylYYYyYY, €
charges) - -] Ll {405
Yy ¢
1 v =
I 4
= Microchannel is a first attempt as an e r -
investigative support for the array i e 390
- Gap width (cavity diameter) was not varied R v DPP
250 a5 s0 65 750
UPeak[V]

Fig.37) Discharge position in a microchannel device depending on the applied voltage
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Electric field — All in all...

= Stark effect was a nice method to get electric = All contributions depends on the cavity

field strengths and trends dimension and applied voltage

= Position and shape of the discharge also has a

= Challenges: We see that electric field that the dependency on these parameter

excited helium particles see at the time of = Wave character, asymmetric discharge,...

emission

—>Trends cannot be explained yet = How is everything connected?

—~>Research!

= The electric field is caused by

> Surface charges on the dielectr A=492.19 nm y

—>Volume charges in cavity

—
Eanume

H
—>Nickel electrode : X
|
1
1
1
1
I
I
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aperture

c I i
‘ ' n l l I ‘ ' n i dy=200pum  :  dp=150um ;  d;=100pm :  d4=50 pm . .
c S nickel f°i|\ dielectric

= Our metal-grid array is a great alternative to the |
Slllcon-based deViceS that. .. plastic carrier

magnet
: . = =
—>1s demountable in its components gas inlet gs outlet
>has the required lifetime for long-term .
investigations = | e
= The Stark effect can be applied on the MCPA I ¥ E ]
and provide... | os]
—>reasonable values for the electric field waveeng o B e
elnterestlng phase'dependent trends normalized intensity width [um] width [um]
1,00
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0,75 150
= Optical emission spectroscopy... osoff] E
S 50
—>enables a deeper insight in the general i
discharge behavior 000
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Electric field — Polarisation Cross-section view
te t o FE

= Polarizer has no influence on the spectra

= E-field parallel to surface normal: o-polarised

emission Head-on view

= E-field orthogonal to surface normal: 1r- polarised

emission
= Due to the radial symmetry, orientation of NA
polariser has no influence
* o) * unpolarised
= Spectrum is fitted with 5 components *

—->Unshifted 492,19 nm

-2 1r-components (forbidden and allowed)
-2 0 -components (forbidden and allowed) polarised

Fig.19) Sketch of the polarized emission of an array
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