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What is a micro cavity plasma array?

▪ An symmetric and uniform assembly of hundreds to 

thousands cavities

▪ Cavities: Dimensions in the micrometer range (~100µm)

▪ Different shapes (quadratic, cylindrical, inverted 

pyramidal,…)

▪ Cavities can be engraved in various wafer (silicon, glass, 

ceramic, …)

▪ All cavities are operated with the same excitation

→ Discharge in the cavities can be compared

Fig.2) Photograph of a silicon-based array

with four different cavity structures   DBD [2][1] G. Eden et al. J. Phys. D: Appl. Phys. 38 (2005) 1644-1648

[2] M. K. Kulsreshath et al. Plasma Sources Sci. Technol. 23 045012 (2014)

Fig.1) SEMs of a single cavity and a segment of an array with inverted pyramidal cavities
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Silicon-based array devices

▪ Developed by group of G. Eden [2]

▪ Silicon-wafer contains an array of cavities

▪ Silicon-based devices are produced by micro-structure 

technique

→Integration and subsequent analysis of individual    

components  are difficult

▪ Measurements with very changeable conditions 

(pressure, admixture,…)

→These devices reach their limits

→Long-term spectroscopy is not possible

▪ Is there an alternative?

Fig.3) Sketch of a silicon-based array device developed by G. Eden [1]

Fig.4) Sketch of a silicon-based array device developed at GREMI in France [3][1] G. Eden et al. J. Phys. D: Appl. Phys. 38 (2005) 1644-1648

[3] R. Michaud et al. Plasma source Science and Technology 24 (2018)
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Metal-grid array device

▪ This device is built like a sandwich: magnet, 

dielectric, metal grid

▪ Grid consists four different cavity structures

→Automatic diameter variation at same condition

Fig.5) Sketch of a metal-grid array with exchangeable components

▪ Structure is enclosed with a glass case

→Optical access and gas flow operating system

▪ Foil and dielectric can be changed easily
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Metal-grid array device - dismountable

Fig.6) Photograph of the disassembled device

▪ Due to the magnetic holding, the device is dismountable in its 

components

▪ That allows to change the components (properties)

→Dielectrics (glass, aluminum oxide, zirconium oxide, …)

→Dielectric covered with a catalyst (manganese oxide,…)

→Grid (cavity diameter and spacing, trenches, channels, …)

▪ After operation and treatment, components can be removed 

for surface investigations (LSM, XPS, …)

▪ How does the plasma interact with the surface or especially 

with the catalyst?

0,2 mg/cm2 0,2 mg/cm2 0,5 mg/cm2 1,0 mg/cm2

Fig.7) Dielectric covered with catalyst
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Investigation of the used dielectric

▪ Dielectric can be investigated after operation

▪ Here: XPS and microscope recordings

▪ Black colored and cavity shaped pattern is covered on the 

dielectric

▪ XPS: Black structure consists of nickel from the grid
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[3] Sebastian Dzikowski et al. PSST 29 035028 (2020)

Fig.8) Photograph and microscope recording of a used and covered dielectric [3]

Fig.9) XPS spectra of an used dielectric after operation

Ni

Ni



8 International Online Plasma Seminar 2020 | Sebastian Dzikowski | Chair for Experimental Physics II | Bochum

Metal-grid array device - Comparability

▪ Metal-grid and silicon-based array differ in setup 

and structure

→Can they be compared with each other?

▪ UI-characteristic and photomultiplier signal were 

detected for both devices

▪ A voltage increase leads to several pulses

▪ Each pulse represent an ionization wave that 

travels along the array surface

Fig.10) UI-characteristic and photomultiplier signal of a metal-grid and silicon-based array [3]

[3] Sebastian Dzikowski et al. PSST 29 035028 (2020)

SBA, U=330 V SBA, U=400 V

MGA, U=350 V MGA, U=390 V
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Metal-grid array device – Wave character

▪ Phase-resolved imaging with an ICCD-camera 

within emission pulse

→Time resolution of 200 ns

▪ Not all cavities operate at the same time

→An ionization wave travels from bottom left to top 

right

→v=10 km/s

→Wave occurs independent of the polarity of 

applied voltage

▪ Metal-grid und silicon-based devices show this 

behavior

→Can be compared 

Fig.11) Phase resolved images of an ionization wave traveling along the array’s surface [3]

[3] Sebastian Dzikowski et al. PSST 29 035028 (2020)
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Metal-grid array device – Asymmetric discharge

▪ Discharge shows an asymmetric behavior for 

positive and negative applied voltages

▪ IPP: Discharge prevails at the edges outside the 

cavities

→Electrons are accelerated outside

→Ring structure 

▪ DPP: Discharge takes place rather centered inside 

the cavity

→Electrons are accelerated to the dielectric

→Dot structure

▪ Observable again for both devices

Fig.12) Asymmetric discharge behavior of a metal-grid and silicon-based array [3]

[3] Sebastian Dzikowski et al. PSST 29 035028 (2020)

IPPIPP DPP



11 International Online Plasma Seminar 2020 | Sebastian Dzikowski | Chair for Experimental Physics II | Bochum

Motivation – Electric field
▪ DBD with a pore in one dielectric was simulated [1]

▪ High densities and electric field are inside the pore

→ Great conditions for catalysis

→ Charged particles can be controlled

▪ Strong dependency on pore diameter and applied voltage

→Both parameter can be changed and controlled in a micro 

cavity plasma array

▪ Electric field strengths were never measured before on an 

array

▪ How to measure?

Fig.13) Sketch of the used DBD in simulation [4]

Fig.14) Electric field and electron density in the simulated DBD [4]

[4] Yu-Ru Zhang et al. Applied Catalysis B: Environmental 185 (2016)
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Electric field – How to measure
▪ A lot of optical methods are available for measuring the 

electric field

▪ BUT:  Not every method is applicable to arrays

▪ Laser based methods

→No optical access to the inside of the cavities (strong field 

strength)

▪ Nitrogen based methods

→Relative intensities of the second positive and first 

negative band of nitrogen

→Admixture influence discharge

→Further plasma parameters (EEDF, …) are necessary and 

unknown for the arrays

[5] Simon Kreuznacht, PSST, submitted

Fig.15) Applied electric field inside the cavity [5]

Fig.16) Optical diagnostic tools on a MCPA
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Electric field – Stark effect

[6] J. S. Foster et al. Proc. R. Soc. Lond. Ser. A 117 137 (1927)

▪ Strong electric field → Stark splitting of atomic lines

▪ Here: He 492,19 nm line

▪ Advantage: Method is based on quantum mechanical, no 

further plasma parameters

▪ Line split in a forbidden and in an allowed part

→High Δλ → high electric field

→Unshifted 492,19 nm line is also included

▪ Each part contains transitions depending on the change 

of the quantum magnetic number

→Δm=0, linear polarized parallel to E-field (π-called)

→Δm=+-1, circular polarized in E-field direction (σ-called)
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Fig.17) Recorded spectra of the split 492 nm line 

Fig.18) Profiles displacement depending on the electric field [6] 

Δλ
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Experimental setup and diagnostic

▪ Plane grating spectrometer (PGS) for 

high resolved OES

▪ ICCD-camera is synchronized 

▪ PMT for temporal evolution of the 

emission

▪ Light fiber can be shifted along the 

cavity structures

Fig.20) Sketch of the experimental setup
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Electric field – Asymmetric discharge

Fig.21) Phase resolved images of the asymmetric discharge

▪ Asymmetric discharge behavior in positive 

potential phase (IPP) and negative potential 

phase (DPP) 

▪ IPP: Ring-structure outside the cavities

▪ DPP: Dot-structure inside the cavities
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▪ How does the electric field differ?

→First: Time integrated measurements for 

PPS and NPS

Fig.22) PMT-signal depending on the applied voltage
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Electric field – Cavity diameter variation

▪ All four cavity structures are operated under same 

conditions

▪ 700 V

▪ 15 kHz

▪ 2 slm

▪ π and σ : Same trend, but values different

▪ Small intensity for the 50 µm cavities

▪ IPP: Nearly constant

▪ DPP: Decreasing with increasing diameter

▪ Strongest electric field at edges inside the cavity 

→ discharge inside the cavity during DPP

Fig.23) Measured electric field depending on the cavity diameter
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Electric field – Applied voltage variation

▪ Applied voltage variation on 200 µm and 10 

µm cavities

▪ 15 kHz

▪ 2 slm

▪ IPP: Constant trend for both cases

▪ NPS: Higher electric field again and 

decreasing trend

▪ Why does the electric field decrease or keep 

constant with higher applied voltage?
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Fig.24) Measured electric field depending on the applied voltage 

Fig.25) Measured electric field depending on the applied voltage 
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Electric field – Time resolved measurements

▪ Time resolved measurements on 200 µm cavities

→Highest intensity

▪ 15 kHz

▪ 2 slm

▪ 700 V

▪ First case: Time resolution of 1 µs

→IPP: Rather constant trend, not clear

→DPP: Electric field decrease within the slope

▪ Second case: Time resolution of 500 ns

→Values are reproduceable

→Electric field behaves like the emission

0 10 20 30 40 50 60

-700

-350

0

350

700

A
p
p
lie

d
 v

o
lt
a
g
e
 [
V

]

Time [µs]

0,0

0,2

0,4

0,6

0,8

1,0

18

20

22

24

26

28

30

E
le

c
tr

ic
 f
ie

ld
 [
k
V

/c
m

]

25 26 27 28
0

175

350

A
p
p
lie

d
 V

o
lt
a
g
e
 [
V

]

 Measurement 1

 Measurement 2

 Measurement 3

 Average

Time [µs]

0,0

0,5

1,0

20

21

22

23

24

25

26

27

28

E
le

c
tr

ic
 F

ie
ld

 [
k
V

/c
m

]

Fig.26) Time-resolved electric field strengths (1 µs)

Fig.27) Time-resolved electric field strengths (500 ns)
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Electric field – Success and challenges

▪ Success

→Stark effect can be applied

→Field strengths are in a reasonable range

→Comparable to some models

→Values and trends are reproducible

→Time resolved measurements possible 

▪ Challenges

→Fight with low intensity

→Measurements are spatial-integrated

→Emission dependent diagnostic

Fig.28) Applied electric field inside the cavity [5]

Fig.29) Sketch Stark effect
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Radial discharge distribution – Cavity variation
▪ Spatial resolved measurements are not 

possible

▪ Camera and different filter are connected 

ahead the MCPA

▪ → radial discharge distribution

▪ Cavity diameter variation

▪ Same conditions as in the electric field 

measurement
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▪ IPP: Stronger emission at the edges for 200 and 150 

µm

▪ Larger diameter → discharge tends to prevails 

outside

▪ DPP: No modulation, rather a plateau for large 

diameters

▪ Results correspond to the asymmetric discharge 

behavior

Modulation

Fig.30) Emission distribution IPP, wavelength resolved Fig.31) Emission distribution for all cavity diameter Fig.32) Emission distribution for all cavity diameter
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Radial discharge distribution – Voltage variation

▪ 200 µm cavities

▪ IPP: Modulation decreases with higher voltage

▪ → The cavity is filled out with the discharge

▪ DPP: Plateau is unchanged

▪ Depending on both parameters the discharge changes 

between the edges (high field) and center in the IPP

▪ How does the profile change along the cavity height?

▪ Generally, more changes in the IPP, but the electric field 

shows a change in the DPP

▪ In context of the electric field the results are still difficult to 

interpret
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Fig.33) Modulation depending on the applied voltage
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Microchannel device 

▪ Allows an insight in the “cavity”

▪ Investigative “support” for the array

▪ d=120 µm

▪ For small voltage amplitudes, the discharge 

ignites just at the amplitude

→No surface charges that help to ignite

▪ For high amplitudes the discharge ignites 

already in the half period before

▪ Same effect also detectable for the array

→Can be compared

[5] S. Kreuznacht et al. PSST, submitted

Fig.34) Sketch of the microchannel device [5]

Fig.35) Ignition voltage depending on amplitude applied voltage [5]
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Microchannel device – side view images

▪ Goal: Discharge profile in the height

▪ IPP: Discharge takes place at the opening of 

the channel

▪ DPP: Discharge rather centered along the 

height

▪ Asymmetric character observable

▪ How does the position change? 

[5] S. Kreuznacht et al. PSST, submitted

Fig.36) Phase resolved images of the discharge in a microchannel device from the side [5]
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Microchannel device – side view profiles

▪ F= 2slm

▪ f=15 kHz

▪ IPP: Position seems to be nearly constant

▪ DPP: Discharge center move to the 

dielectric (high electric field, surface 

charges) 

▪ Microchannel is a first attempt as an 

investigative support for the array

→Gap width (cavity diameter) was not varied

Fig.37) Discharge position in a microchannel device depending on the applied voltage
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Electric field – All in all…

▪ Stark effect was a nice method to get electric 

field strengths and trends

▪ Challenges: We see that electric field that the 

excited helium particles see at the time of 

emission

→Trends cannot be explained yet

▪ The electric field is caused by 

→Surface charges on the dielectric

→Volume charges in cavity

→Nickel electrode

▪ All contributions depends on the cavity 

dimension and applied voltage

▪ Position and shape of the discharge also has a 

dependency on these parameter

▪ Wave character, asymmetric discharge,…

▪ How is everything connected?

→Research!
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Conclusion

▪ Our metal-grid array is a great alternative to the 

silicon-based devices that…

→is demountable in its components

→has the required lifetime for long-term    

investigations

▪ The Stark effect can be applied on the MCPA 

and provide…

→reasonable values for the electric field

→interesting phase-dependent trends

▪ Optical emission spectroscopy…

→enables a deeper insight in the general 

discharge behavior 

→is supported by the micro-channel device 

relating to the optical access
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Collaboration and funding

This project is supported by the Deutsche
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Transient Atmospheric Plasmas

From Plasmas to Liquids to Solids 
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Thank you for your 
attention!

Questions?
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Electric field – Polarisation

▪ Polarizer has no influence on the spectra

▪ E-field parallel to surface normal: σ-polarised 

emission

▪ E-field orthogonal to surface normal: π- polarised 

emission

▪ Due to the radial symmetry, orientation of 

polariser has no influence

▪ Spectrum is fitted with 5 components

→Unshifted 492,19 nm

→2 π-components (forbidden and allowed)

→2 σ -components (forbidden and allowed)

Fig.19) Sketch of the polarized emission of an array


