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Pr 0/0g%€.° Intr Od%ﬂ.ﬂg MAXIMS (Magnetic X-point similator system)
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MAXIMUS — CAD drawing
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» 60 [cm] Diameter and 2 x 100 [cm] chambers
> 15t chamber is grounded; while 274 chamber is electrically isolated
» Total 110 ports for various diagnostics and control purposes
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MAXIMUS — CAD drawing

15t chamber

2nd chamber

NFP Lab. 5/ 40

Nuclear Fusion&Plasma Lab P’”@Ddﬂ?d by Y.-c. GHIM




MAXIMUS — CAD drawing (half-cut)

Water-cooled, Teflon
insulated copper tubes
carrying DC currents

Two independent
current sources
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MAXIMUS — Picture
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Prologne: An example of low temperature plasmas with tokamak-like poloidal B-fields

By varying (decreasing) the strength
of “poloidal magnetic fields”
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Contents

» General descriptions of MAXIMUS

v Structures of magnetic fields: 1) permanent magnets; 2) axial current

v DC plasma sources: 1) end-plate ThW filaments; 2) core ThW filaments; 3) end-plate LaB disk;

> Basic properties of MAXIMUS plasmas
v" Under the multidipole configuration
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MAXIMUS: Permanent magnets create multidipole configuration

<Side wall> <End-plate wall>

Permanent magnets
(Neodymium)

Bsurface = 0.7[T]

A=24cm

Schematic of
our multidipole
chamber

Alternating p;;es
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MAXIMUS: Permanent magnets create multidipole configuration

T — Vi o =
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MAXIMUS: A pair of axial currents create X-point configuration
MAXIMUS

DC power source 1

DC power source 2

» Two axial copper tubes cooled by
running water can move in vertical
direction
v ypiar < 1.0 kA

v' Currents: either parallel or anti-parallel
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MAXIMUS: Measured (hall probe) total magnetic frelds

MAXIMUS
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MAXIMUS: Calenlated total magnetic fields

(b) “tokamak language”

Edge region
/— Top poloidal field tube

s— Separatrix

Core region

X-point

—C ~— Private region
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MAXIMUS: Available DC plasma source

(a) 2nd chamber
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15t chamber \
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> Three types of sources

1) End-plate wall ThW filaments

(b) e Teal’ e 2) Core ThW filaments
| Axial current tubes .
l: AN —— 3) LaB6 cathode (disk)
= _ LaB; cathode ; Core filaments ,//" |
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l End—plate wall filaments
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Plasma sources: 1) End-plate THW filaments
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Plasma sources: 1) An example of plasmas with the end-plate THW filaments
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Plasma sources: 1) Excamples of plasmas with the end-plate THW filaments
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Plasma sources: 2) Core THW filaments

> A problem with the end-plate ThW filaments: plasmas were not able to penetrate into the “core” region when the
X-point configuration is generated.

» Change the source region: Install a plasma source in the “core” region, then the plasmas will be “confined.”

% |
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Plasma sonrces: 2) A mowvie of plasmas with the core ThW filaments

Permanent magnets By varying (decreasing) the strength of
‘ “poloidal magnetic fields”
Taxial (top) = 1.0 = 0 kA (varied)
Iaxial (bottom) = 1.0 kA (fixed)
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Comparison between the end-plate and core filaments

A Chamber wall >

/

AN

(b) Teflon tube
(insulator)
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Copper tube = . m
op View .
NQE Engneeting.
NFP Lab. 22/ 40
Nuclear Fusion&Plasma Lab PWPWWZ @/ Y.-e. GHIM I(AI ST




Plasma sources: 3) End-plate I.aB, disk
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Plasma sources: 3) End-plate I.aB, disk

(a)

End-plate wall of
the first chamber

LaBg plate

accelerating plate Graphite heater

Spiral coo
water line ||
)
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Plasma sources: 3) Excample of plasmas with the end-plate 1 .aB, disk

v' Operation limit
o Heating power
- P, =5kW
o Discharge condition
- 1; =504,V; = =200V
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Langmuir probes measure plasma properties

(a)

NFP Lab.

<Three sets of Langmuir probes>
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(a)

x 1

-3 (ensemble averaged over 30 measurements)
0

<An example of IV curve from MAXIMUS plasmas>
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Data obtained with
the end-plate ThW filaments
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Multidipole vs non-multidipole plasmas (I, , =

= 0.0 £A)

Ar neutral pressure : 1.00 mTorr; Discharge (bias) voltage: -80.0 V; Discharge current = 0.5 A

<Radial profile>

—§— Without multidipole configuration
—— With multidipole configuration
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<Verifying the Boltzmann electrons>
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2D profiles of plasmas are obtained at 3=50 [cm]
loxia1 = 0.3 [kA]
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Plasma properties are correlated with the poloidal B-fields
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Ar neutral pressure : 1.00 mTorr; Discharge (bias) voltage: -100.0 V; Discharge current = 0.2 A
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temperatures and absolute values of floating potentials are smaller in the core region

b

> Densities

region as B-fields increase)

>
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<

no plasmas in the

b

1.e.

(consistent with the visual pictures,

> As plasmas are produced in the ‘edge’ region, it becomes more difficult for plasmas to penetrated into

the ‘core’ region as B-field increases as if there exists a transport barrier.
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Data obtained with
the core ThW filaments

Note:
* Some of the data we show are not fully validated, thus credibility of

the analyzed data may be questionable.
* Consider what I show 1s just preliminary results to stimulate further

discussions.
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Electrons are strongly drifting in the ¢ grad-B and curvature drift direction

rion

» Plasmas are only generated in one side of the core ThW filaments

v" As the bias voltage on the filaments increase, the size of plasma column in axial
direction increases.

v" The direction corresponds to the electron grad-B and curvature drift. (Note:
electrons are most likely to be magnetized while ions are not.)

B=10G; Lyg=10cm Thermal e Primary e-
Temperature [eV] ~1 ~100 ~0.025
vy, [m/s] ~4.2x10° ~4.2x10° ~250
f.. [Hz] ~28M ~28M ~400
r. [cm] ~0.24 ~2.4 ~10
Vyg + Veyry [M/s] ~10% ~10° ~250
NQe: o
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Radial profiles (in the core region) depend on neutral pressures

Varying Ar neutral pressure; Discharge (bias) voltage: -100.0 V; Discharge current = 1.0 A; [P = JBottom — (50 kA

—¥—p=0.50mTorr
—4—p=1.00mTorr
—4—p=3.00mTorr
——p=6.00mTorr
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\<— Edge region

—_" ’ y=em, radial profilcy . i) Top poloidal field tube
E, 0 }l{ u /¥ Separatrix
> ' . 7~ Core region
o <— X-point
20 P = — Private region
% 2 40 o 10 20
X [cm]

> Stiff gradients are observed for small neutral
pressures (less collisions leading smaller diffusivity
allows the gradient to be sustained by the B-fields).

» Unusually (absolute) large floating potentials
(compared to no poloidal B-field) are observed which
can be explained by large amount of high energy

electrons due to the drifting motions.
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Up-down symmetry at smaller radial position with smaller poloidal B-fields

Ar neutral pressure: 1.00 mTorr; Discharge (bias) voltage: -80.0 V; Discharge current = 1.0 A
v

30

—4 Lx =1.00kA, y =+8cm ..§ I,y =1.00kA, y=—-8cm
—4 Lax =0.50KkA, y =4+8cm .§. I,y =0.50kA, y =—8cm
—+ Lx =025KkA, y=4+8cm ..} [,y =025kA y=—-8cm

20 .
Core region

y=8cm, radial profile

y=-8cm, radial profil

Private regio

30

> Plasma source only exists in the core
region (around the top copper tube)

v Top (y=8cm) and bottom(y=-8cm) plasmas
become ‘similar’ at the smaller radial location
when the poloidal B-fields are smaller

v" This may be explained by easier diffusion with
smaller B-fields.

v' Perhaps, this can be used to measure the particles
(or heat) diffusivity.

NQE Engincering
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Flattened plasma profiles around the magnetic X-point

Ar neutral pressure: 1.00 mTorr; Discharge (bias) voltage: -150.0 V; Discharge current = 1.0 A

30 e

3 00 7 _ — Edge region
_ Top poloidal field tube
101/ > i<— Separatrix
l < | ore region

C"T 4 0‘.1 roﬁles ‘ )C(-pointg

g 0 : \T Private region

~ 3 -'

> 20+

)
A 393.0 ~é0 -1.0 ] 0 7 1AO 2A0 3‘0

S 2 X [cm]

X

L 1 - I » As we’ve seen consistently, profiles are

Private ~ Core stiffer for stronger poloidal B-fields.
0 ~ region | region > Profiles are flattened around the X-point
4 i) 0 2) 4 indicating increased transport levels
y [cm] around the X-point. (B-fields are weak
around the X-point.)
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T o investigate role of neutrals in a tokamak scrape-off layer

> Neutrals in the scrape-off layer

— » SOL)

v’ act as sources/sinks of particles,
momentum and energy

v are correlated with shear flow which is a

i widely accepted key parameter for low
, rn.pu ff

i, | | and high confinement mode transitions
Y = Nisep oo N

v' plays an important role for generating
detached plasmas (from divertors) which

reduces heat loads to the divertor

v' may cause (through sudden H-L back
transition) or mitigate/prevent

I: core plasma
II: upper scrape-off layer (SOL)

disruption nts througch r lin
III: divertor SOL uption events through recycling

processes

n,pump

v are considered to be a hidden variable
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To investigate fundamental physics of non-Maxawellian electrons

» VB and curvature drifts not only shifts the EVDF, but they also generate skewness and
excess kurtosis.
v This 1s because these drifts depend on a speed of an individual particle.
v We can control levels of skewness and excess kurtosis in some degrees.

v We are interested in investigating how various physics such as diffusion process, plasma waves and
nonlinear physics (solitons, shock-wave, etc.) depend on skewness and excess kurtosis of EVDF.

» Some of interesting phenomena observed in solar corona, solar wind, space plasmas,
magnetic reconnection are high energy density plasmas are theoretically explained with
non-Maxwellian EVDFs.

v We plan to design experiments to investigate such interesting phenomena with MAXIMUS.
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Summary

» We have introduced our linear plasma system MAXIMUS which can generate

v' Tokamak-like poloidal magnetic fields with an X-point configuration
o Thus, MAgnetic X-point sIMUlator System

» We have introduced you three types of plasma sources with characteristics of generated
plasmas
1) End-plate ThW filaments
2)  Core ThW filaments
3) End-plate LaBg disk
» We have presented how plasma profiles are affected by poloidal magnetic fields.

Thank YOU!
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