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Prologue: Introducing MAXIMS (Magnetic X-point simlator system)
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MAXIMUS – CAD drawing
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Ø 60 [cm] Diameter and 2 x 100 [cm] chambers
Ø 1st chamber is grounded; while 2nd chamber is electrically isolated
Ø Total 110 ports for various diagnostics and control purposes
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MAXIMUS – CAD drawing
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MAXIMUS – CAD drawing (half-cut)
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MAXIMUS – Picture

7 / 

(a) (b)1st chamber
2nd chamber 1st chamber 2nd chamber



Nuclear & Quantum
Engineering

Prepared by Y.-c. GHIM
40

Prologue: An example of low temperature plasmas with tokamak-like poloidal B-fields 
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Ø General descriptions of MAXIMUS
ü Structures of magnetic fields: 1) permanent magnets; 2) axial current

ü DC plasma sources: 1) end-plate ThW filaments; 2) core ThW filaments; 3) end-plate LaB6 disk; 

Ø Basic properties of MAXIMUS plasmas

ü Under the multidipole configuration

ü Under the poloidal magnetic fields configuration with X-point

Ø Motivation of building MAXIMUS

Ø Summary

Contents
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MAXIMUS: Permanent magnets create multidipole configuration
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MAXIMUS: Permanent magnets create multidipole configuration
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Permanent magnet holder

Permanent magnet holder
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MAXIMUS: A pair of axial currents create X-point configuration
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DC power source 1

DC power source 2
(+) (-)

𝐼!"#!$
MAXIMUS

Ø Two axial copper tubes cooled by 
running water can move in vertical 
direction
ü 𝐼!"#!$ ≤ 1.0 𝑘𝐴
ü Currents: either parallel or anti-parallel
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Ø (a) 𝐼!"#!$
%&' = 𝐼!"#!$(&%%&) = 0.30 [kA]

Ø (b) 𝐼!"#!$
%&' = 𝐼!"#!$(&%%&) = 0.60 [kA]

Ø (c) 𝐼!"#!$
%&' = 𝐼!"#!$(&%%&) = 0.90 [kA]

MAXIMUS: Measured (hall probe) total magnetic fields
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MAXIMUS: Calculated total magnetic fields
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“tokamak language”
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Ø Three types of sources

1) End-plate wall ThW filaments

2) Core ThW filaments

3) LaB6 cathode (disk)

MAXIMUS: Available DC plasma source
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Plasma sources: 1) End-plate ThW filaments
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End-plate ThW filaments
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Plasma sources: 1) An example of plasmas with the end-plate ThW filaments
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Plasma sources: 1) Examples of plasmas with the end-plate ThW filaments

19 / 
19 / 

𝑰𝒂𝒙𝒊𝒂𝒍 = 𝟎𝒌𝑨 0.1 0.2

0.5 0.60.40.3

0.7 0.8 0.9 1.0



Nuclear & Quantum
Engineering

Prepared by Y.-c. GHIM
40

Plasma sources: 2) Core ThW filaments
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Ø A problem with the end-plate ThW filaments: plasmas were not able to penetrate into the “core” region when the 
X-point configuration is generated.

Ø Change the source region: Install a plasma source in the “core” region, then the plasmas will be “confined.”
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Plasma sources: 2) A movie of plasmas with the core ThW filaments
By varying (decreasing) the strength of  
“poloidal magnetic fields”
Iaxial (top) = 1.0 à 0 kA (varied)
Iaxial (bottom) = 1.0 kA (fixed)
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Comparison between the end-plate and core filaments

22 / 

A Chamber wall

Copper tube

(a)

(b) Teflon tube 
(insulator)

Alumina tube

Thoriated 
tungsten 
filaments

Top view



Nuclear & Quantum
Engineering

Prepared by Y.-c. GHIM
40

Plasma sources: 3) End-plate LaB6 disk
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End-plate ThW filaments
End-plate LaB6 disk
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Plasma sources: 3) End-plate LaB6 disk
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Plasma sources: 3) Example of plasmas with the end-plate LaB6 disk

Primary (energetic) electrons
Primary (energetic) electrons

Primary (energetic) electrons

ü Operation limit
o Heating power
– 𝑃! = 5𝑘𝑊

o Discharge condition
– 𝐼" = 50𝐴, 𝑉" = −200𝑉
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Langmuir probes measure plasma properties
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Data obtained with 
the end-plate ThW filaments
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Multidipole vs non-multidipole plasmas (Iaxial = 0.0 kA)
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<Verifying the Boltzmann electrons> 

Ar neutral pressure : 1.00 mTorr; Discharge (bias) voltage: -80.0 V; Discharge current = 0.5 A

𝑇!"" # $%%.'()
= 1.764 ± 0.036 eV

𝑇!*+,-.)/00 = 1.773 ± 0.005 eV

àIndicating that measurements of 
𝜙1, 𝑛! and 𝑇!"" are consistent. 
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2D profiles of plasmas are obtained at z=50 [cm] 
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Plasma properties are correlated with the poloidal B-fields
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Ar neutral pressure : 1.00 mTorr; Discharge (bias) voltage: -100.0 V; Discharge current = 0.2 A

Ø Densities, temperatures and absolute values of floating potentials are smaller in the core region 
(consistent with the visual pictures, i.e., no plasmas in the ‘core’ region as B-fields increase)

Ø As plasmas are produced in the ‘edge’ region, it becomes more difficult for plasmas to penetrated into 
the ‘core’ region as B-field increases as if there exists a transport barrier.
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Data obtained with 
the core ThW filaments

Note: 
• Some of  the data we show are not fully validated, thus credibility of  

the analyzed data may be questionable.
• Consider what I show is just preliminary results to stimulate further 

discussions.
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Electrons are strongly drifting in the e- grad-B and curvature drift direction
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No plasma region

No plasma region

Ø Plasmas are only generated in one side of the core ThW filaments
ü As the bias voltage on the filaments increase, the size of plasma column in axial 

direction increases.
ü The direction corresponds to the electron grad-B and curvature drift. (Note: 

electrons are most likely to be magnetized while ions are not.)

B=10G; 𝑳𝛁𝐁=10cm Thermal e- Primary e- Ar+

Temperature [eV] ~1 ~100 ~0.025

vth [m/s] ~4.2x105 ~4.2x106 ~250

fce [Hz] ~28M ~28M ~400

rL [cm] ~0.24 ~2.4 ~10

𝑣%& + 𝑣'()* [m/s] ~104 ~106 ~250
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Ø Stiff gradients are observed for small neutral
pressures (less collisions leading smaller diffusivity 
allows the gradient to be sustained by the B-fields).

Ø Unusually (absolute) large floating potentials 
(compared to no poloidal B-field) are observed which 

can be explained by large amount of high energy 
electrons due to the drifting motions.

Radial profiles (in the core region) depend on neutral pressures
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y=8cm, radial profile
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Varying Ar neutral pressure; Discharge (bias) voltage: -100.0 V; Discharge current = 1.0 A; 𝐼!"
%&' = 𝐼!"(&%%&) = 0.50 kA
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Ø Plasma source only exists in the core 
region (around the top copper tube)
ü Top (y=8cm) and bottom(y=-8cm) plasmas 

become ‘similar’ at the smaller radial location 
when the poloidal B-fields are smaller

ü This may be explained by easier diffusion with 
smaller B-fields.

ü Perhaps, this can be used to measure the particles 
(or heat) diffusivity.

Up-down symmetry at smaller radial position with smaller poloidal B-fields
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Ar neutral pressure: 1.00 mTorr; Discharge (bias) voltage: -80.0 V; Discharge current = 1.0 A
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Flattened plasma profiles around the magnetic X-point
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Ar neutral pressure: 1.00 mTorr; Discharge (bias) voltage: -150.0 V; Discharge current = 1.0 A

Ø As we’ve seen consistently, profiles are 
stiffer for stronger poloidal B-fields.

Ø Profiles are flattened around the X-point 
indicating increased transport levels 
around the X-point. (B-fields are weak 
around the X-point.)
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Ø General descriptions of MAXIMUS
ü Structures of magnetic fields: 1) permanent magnets; 2) axial current

ü DC plasma sources: 1) end-plate ThW filaments; 2) core ThW filaments; 3) end-plate LaB6 disk; 

Ø Basic properties of MAXIMUS plasmas

ü Under the multidipole configuration

ü Under the poloidal magnetic fields configuration with X-point

Ø Motivation of building MAXIMUS

Ø Summary
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Ø Neutrals in the scrape-off layer 
(SOL)
ü act as sources/sinks of particles, 

momentum and energy
ü are correlated with shear flow which is a 

widely accepted key parameter for low 
and high confinement mode transitions 

ü plays an important role for generating 
detached plasmas (from divertors) which 
reduces heat loads to the divertor

ü may cause (through sudden H-L back 
transition) or mitigate/prevent 
disruption events through recycling 
processes

ü are considered to be a hidden variable 

To investigate role of neutrals in a tokamak scrape-off layer
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To investigate fundamental physics of non-Maxwellian electrons
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Ø ∇𝐵 and curvature drifts not only shifts the EVDF, but they also generate skewness and 
excess kurtosis.
ü This is because these drifts depend on a speed of an individual particle.
ü We can control levels of skewness and excess kurtosis in some degrees.
ü We are interested in investigating how various physics such as diffusion process, plasma waves and 

nonlinear physics (solitons, shock-wave, etc.) depend on skewness and excess kurtosis of EVDF.

Ø Some of interesting phenomena observed in solar corona, solar wind, space plasmas, 
magnetic reconnection are high energy density plasmas are theoretically explained with 
non-Maxwellian EVDFs.
ü We plan to design experiments to investigate such interesting phenomena with MAXIMUS.
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Ø We have introduced our linear plasma system MAXIMUS which can generate
ü Tokamak-like poloidal magnetic fields with an X-point configuration

o Thus, MAgnetic X-point sIMUlator System

Ø We have introduced you three types of plasma sources with characteristics of generated 
plasmas
1) End-plate ThW filaments
2) Core ThW filaments

3) End-plate LaB6 disk

Ø We have presented how plasma profiles are affected by poloidal magnetic fields.

Summary
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Thank YOU!


