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Gas-liquid plasma systems
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Plasma-liquid interface: the key driver of plasma-
induced reactivity
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Bulk liquid transport processes also control
interfacial reactivity
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Plasma-induced flow and bulk liquid mixing strongly affect interfacial chemistry
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Mixing affects the performance of gas-liquid plasma
reactors for treatment of surfactant compounds
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The effect of argon gas flowrate on the degradation of
perfluorooctanoic acid (PFOA) in a 10 gpm enhanced

contact plasma reactor.
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“The means of contact” affects the plasma rector
performance

Is the plasma reactor performance
ultimately determined by the “mode of
mixing”, that is, the way the liquid in the
reactor contacts the plasma-liquid
interface? Or are the magnitudes of
fluxes of reactive species arriving at the
interface more or equally important?

We have no clear understanding on the
effect of mixing on the plasma reactor
performance....
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Bulk liquid mixing enhances gas-liquid mass
transport
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Plasma-induced bulk liquid effects
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Plasma-induced interfacial mixing: degradation of
RhB dye
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Visualization of coupled mass transfer and
reaction: degradation of RhB dye
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Visualization of RhB degradation: the effect of
applied voltage
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The role of convective transport in the
decomposition of crystal violet (CV) dye
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Can the type of the compound in the liquid also
affect the convective transport in the liquid?
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Time evolution of the flow field for the base case
(no chemicals added)

« Aqueous NaCl solution at 300 uS/cm, f=40 Hz, V=(+) 25 kV
« Argon in the reactor headspace (no flow)

Nicalhhavan lanatian







Time evolution of the flow field for Rhodamine B

« Aqueous NaCl solution + 1 mg/L RhB at 300 uS/cm, f=40 Hz, V=(+) 25
kV

« Argon in the reactor headspace (no flow)
Discharge location







The flow reversal and the concentration gradient driven
Marangoni flow

Strong surfactants reverse the flow but only for a certain period of time; as
they degrade, flow returns to “normal”.
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Mean surface speed depends on multiple parameters
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Discharge frequency and bulk liquid chemistry

« Does the discharge frequency control the rates of chemical
reactions in a gas-liquid electrical discharge plasma reactor in the
absence of external (forced) mixing?

The effect of frequency on overall reactor performance is not well
understood due to conflicting literature findings

» This work investigates the effect of frequency on the degradation
of six solutes: phenol, pyrazole, rhodamine B, perfluorooctanoic
acid (PFOA), 2-(2-Aminoethoxy) ethanol (DGA), and caffeine
between 40 Hz and 120 Hz.

The central approach focuses on coupling bulk liquid convective
transport with the chemical kinetics.



Degradation profiles of

SiX solutes vs.

discharge frequency
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Dependence of the rate constant on frequency for
the investigated compounds
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Temperature effect on degradation

« Atf>60 Hz, experiments were accompanied by a significant increase
in the bulk liquid temperature (20°C in 20 minutes at 120 Hz).
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Linear dependence of the bulk liquid concentration on
the number of discharges up to ~ 2 uM
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Non-linear dependence of the bulk liquid concentration
on the number of discharges below ~ 2 uM

2.0 5 2.5

PFOA | Rhodamine B
2.0 1
1.5 - !
. 1
T ® 154 @
Q
% 1.0 1 i é % | + ®
@) [ ] @)
%.§§ ;%i ; 1.0 % .§
0.5 1 ¢ L4 §§ §0 ° - ®
05- ‘og g ;
° .‘o o8 } ]
0.0 11— 0.0 ey ————
0.0 5.0x10* 1.0x10° 1.5x10° 2.0x10° 0.0 5.0x10*  1.0x10° 1.5x10° 2.0x10°

Number of discharges Number of disharges

Removal rates may be independent of the discharge
frequency.



Dependence of the removal rates on the concentration

below ~ 2 uM
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Transport and chemical reaction limited regimes
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The chemical reaction limited regime
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Verification of the chemical reaction limited regime
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Degradation rates of compounds at concentrations > 2 uM
depend on the flux of the reactive species.
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The mass transport limited regime
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« <2 uM a solute degradation rate is proportional to its bulk liquid
concentration and is independent of frequency.

« The observed kinetic behavior is hypothesized to be a result of bulk

liquid mass transport limitations, in particular convection in the liquid
phase (Pe > 10°)....BUT....

could a compound’s tendency to accumulate at a gas-liquid interface be

also controlling reaction rates? Both PFOA and RhB are surfactants.
28



Interfacial vs. bulk liquid compound concentrations

1. UNIMPORTANT: solutes’ interfacial excess
concentrations

IMPORTANT: spatial gradients in the solutes’
interfacial concentrations that are created in
the x-direction as they affect the magnitudes
of surface velocities.

The concentration of any solute in the
interfacial region can be assumed to be
equal to its bulk liquid concentration. 29




The role of convective transport in overall removal:
mean surface speeds
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Mean surface velocities for the six non-
surfactant compounds at their respective
concentrations as a function of frequency as
calculated from PIV data.

« The mean surface speeds for non-surface active compounds increase linearly with frequency
(the highest range of velocities), consistent with the ionic wind mechanism.

« For surfactants, Marangoni stresses (2-3 orders of magnitude higher than for non-
surfactants) counteract the ionic wind mechanism and reduce the effect of frequency on
surface speed as well as the magnitude of the surface speed. 30




Verification of the mass transport limited regime
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Mathematical modeling of the system

A numerical model that combines bulk liquid transport and chemical
kinetics was developed to predict the three shapes of the degradation

profiles: linear, exponential and complex nonlinear.
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Coupling reaction zone and convective transport:
caffeine

Caffeine mass balance in the PFR:

oC oC
E:_<usurf>a—x_k.c.CRS
<ug,+> [m/s] = surface speed of the flow

k [m3/(mol-s)] = homogeneous reaction rate constant for the reaction of the
compound with a reactive species (RS)

Crs [mol/m3] = concentration of the reactive species

Reactive species mass balance in the PFR:

8gfs —k-C-Cpo—k -C,2+E(f) R+OH— products ...k

F, [mol/m3/s] = time-averaged generation of the reactive species that is assumed

to be constant along the length of the streamer
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Model parameters

Caffeine macroscopic balance in the CSTR:

dc,
dt

2<usurf?/.h.W-[C(x:L)—C(x:O)]

h [m] = effective height of the interfacial
region

W [m] = width of the reactor

V [m3] = bulk liquid volume

C (x=L) and C (x=0) = concentrations of
the solute at the exit and the inlet of the
PFR, respectively

Parameter Description Unit Value
Width of the liquid
idth of the liqui m 1.27x101
phase
v Volume of the liquid 3 2 0x104
phase
10*to 102
[{W Mean surface speed m's © J
Rate constant
k between caffeine and m?/(mol-s) 6.9x109
OH radicals
Rate constant for OH
k; radicals m3/(mol-s) 5.5x10°9
recombination
Time-averaged
F, reactive species mol/(m?3-s) 10* to107?
influx to the interface
Height of the
h effective degradation m 4x104
zone
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Parametric study: variables F,and <ug,;>

F,: influx of reactive species

<u,,s> : average surface speed

Degradation in the
reaction limited regime:
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Model result implications: lessons from
electrochemistry

Current Limited vs. Mass Transport Limited Regimes
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* Yellow area: degradation of 100% current efficiency

« White area: too many OH- are produced relative to COD concentration

« Higher degradation rate with increasing current: current limited.

* No increase in degradation rate with increasing current: mass transport limited.

https://www.ideals.illinois.edu/bitstream/handle/2142/106646/20190418%20-%20Rusinek.pdf?sequence=2&isAllowed=y



The effect of the recirculation on the degradation of
rhodamine B and caffeine

Mass transport limited regime Reactive species limited regime
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Regime control in the plasma spinning disc reactor
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Regime transition in a DC plasma system

 Headspace: argon
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Rate of rhodamine B degradation vs. instantaneous
concentration showing the regime transition




Summary

Bulk liquid composition and mixing strongly influence the effectiveness of
plasma reactors for water treatment applications.

Compound concentration (among other parameters) in the liquid may control

the reactor’s operating regime; below a certain concentration the system
operates in the mass transport limited regime. Above that critical
concentration, the process is limited by the production of reactive species.

The concentration at which the regime transition occurs will be different for
different plasma treatment systems. Kinetic analysis of the concentration-
time profiles may assist in determining the current operating regime for the
system in question.

Knowledge of the operational regime may assist in the plasma reactor
design through manipulation of the relative magnitudes of the governing
fluxes.
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