Machine learning in low temperature plasma science

Tobias Gergs^{1,2}, Borislav Borislavov¹, Florian Krüger^{1,3}, and Jan Trieschmann¹

International Online Plasma Seminar

April 8, 2021

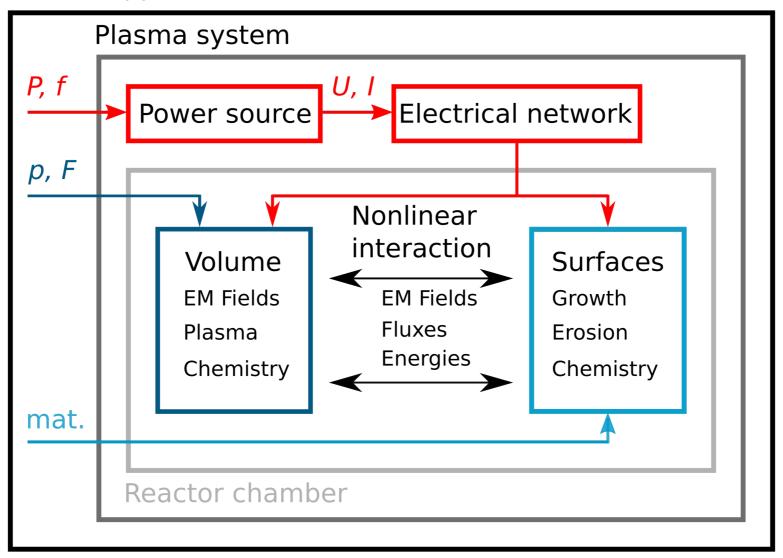
¹Brandenburg University of Technology

²now with Ruhr University Bochum

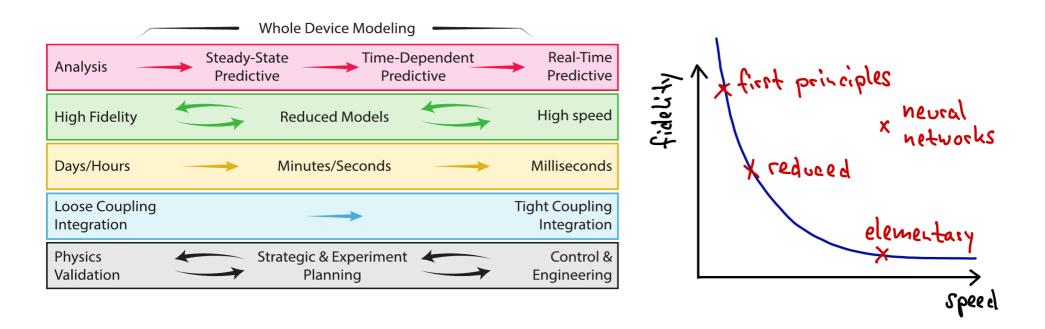
³now with University of Michigan

Low-temperature plasma systems

Plasma application



Machine learning surrogate models



- Elementary models faster at the cost of physical fidelity
- Nonlinear multi-dimensional regression to high fidelity database
- Neural networks may break fidelity vs speed trade-off

Outline

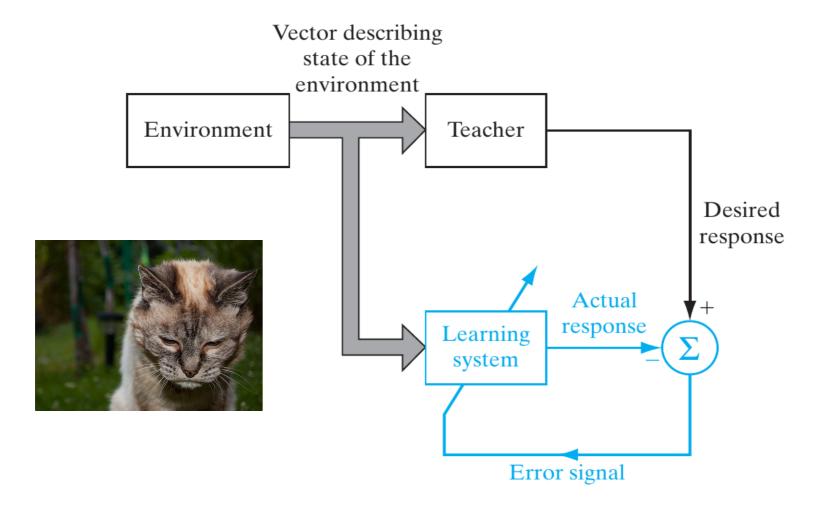
- Machine learning and artificial neural networks
 - Forms of learning and knowledge representation
 - Fully connected and convolutional neural networks, activation functions
 - Loss function, backpropagation
 - Overfitting, generalization
 - Machine learning surrogate models and physics-informed representation
- Example: Plasma-surface model interface
 - Fully-connected artificial neural network
 - Dimensionality reduction for extended TRIDYN data
 - Regression using variational autoencoder and mapper
- Concluding remarks

Machine learning and artificial neural networks

Fundamental aspects

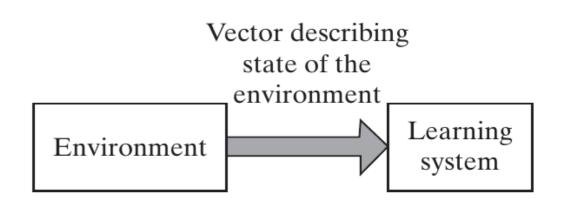
Forms of learning: Supervised

Teacher labels desired response

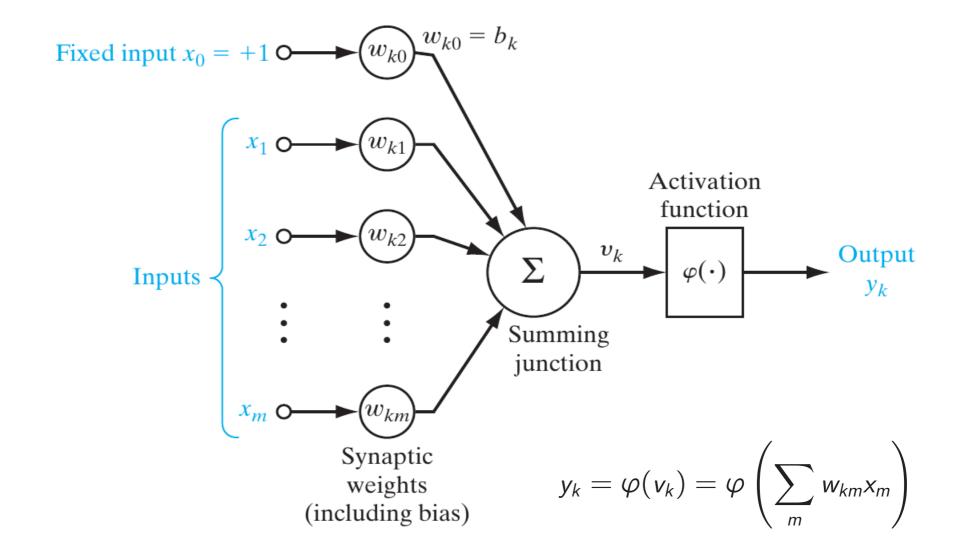


Forms of learning: Unsupervised

No teacher or critic, but task independent measure for quality of representation



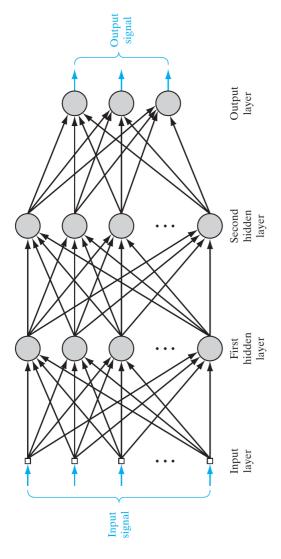
Knowledge representation with artifical synapses and neurons

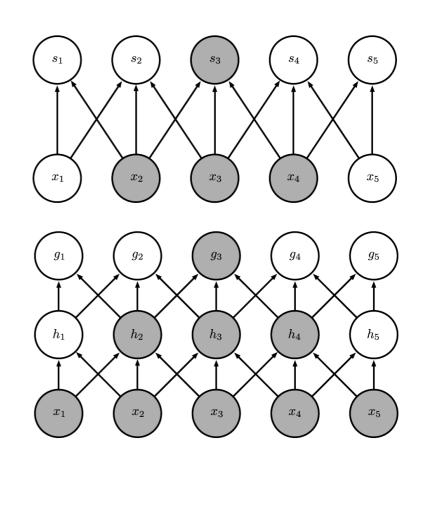


Knowledge representation with artifical neural networks

Fully connected network structure

Convolutional network structure



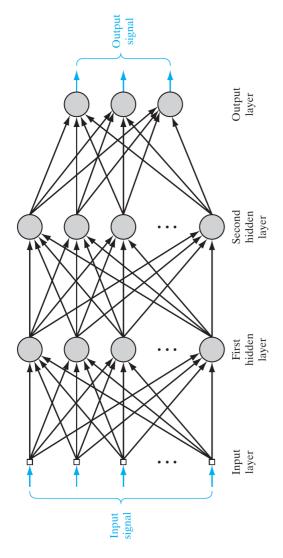


Haykin (2007) Neural networks and learning machines, Pearson Education Goodfellow, Bengio, Courville (2016) Deep Learning, MIT Press

Knowledge representation with artifical neural networks

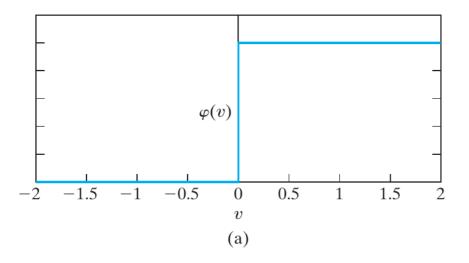
Fully connected network structure

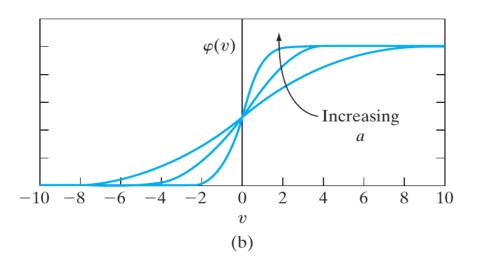
Convolutional network structure

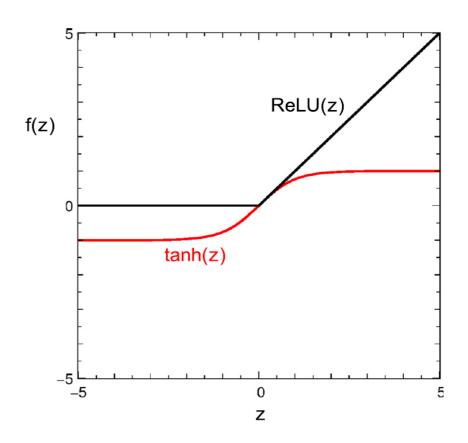


Haykin (2007) Neural networks and learning machines, Pearson Education https://de.wikipedia.org/wiki/Datei:3D_Convolution_Animation.gif

Activation functions







Threshold, sigmoid, hyperbolic tangent, rectified linear unit functions, etc

Distance and loss function

Manhattan distance (L^1 norm)

$$D_1(\vec{p}, \vec{q}) = ||\vec{p} - \vec{q}||_1 = \sum_{k=1}^N |p_k - q_k|$$

All components equally weighted

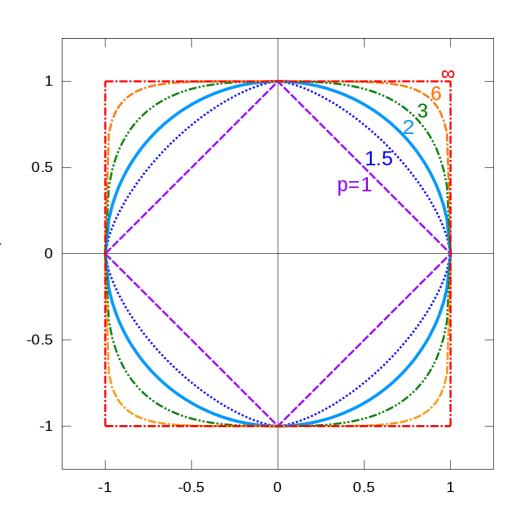
Euclidean distance (L^2 norm)

$$D_2(\vec{p}, \vec{q}) = ||\vec{p} - \vec{q}||_2 = \sqrt{\sum_{k=1}^{N} |p_k - q_k|^2}$$

Gives more weight to large outliers

Loss / cost function for example

$$\mathcal{E}(\vec{w}) = \frac{1}{2} \sum_{\vec{x}_i \in X} D_p^2(\vec{y}_i^*(\vec{x}_i, \vec{w}), \vec{y}_i(\vec{x}_i))$$



Backpropagation

Error signal of output neuron *j*:

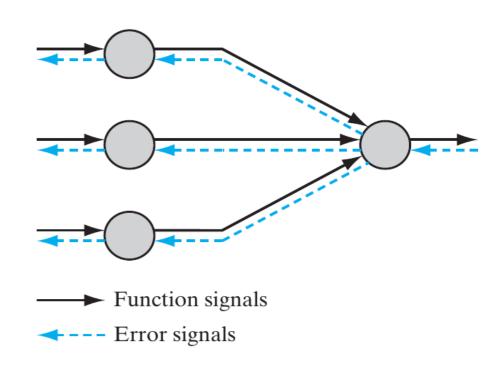
$$e_j(n) = d_j(n) - y_j(n)$$

Total instantaneous error energy:

$$\mathcal{E}(n) = \frac{1}{2} \sum_{j} e_j^2(n)$$

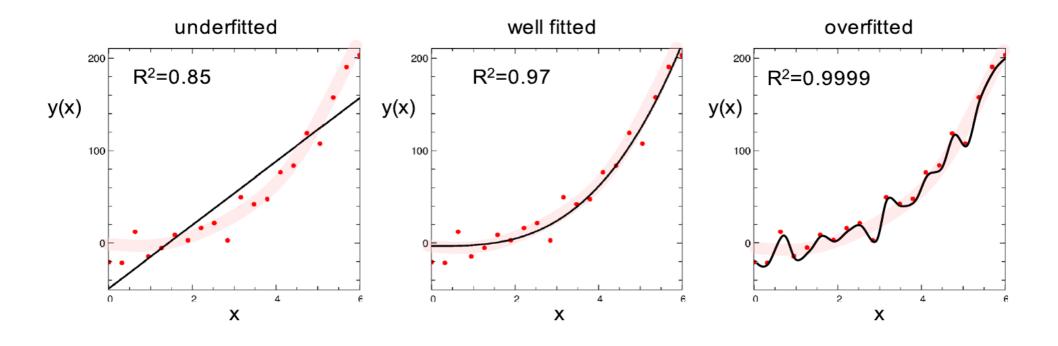
Output layer weight correction:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \frac{\partial v_j(n)}{\partial w_{ji}(n)}$$



Overfitting and generalization

False adoption to uncertainties in training data due to available network complexity



Physics-informed machine learning

Physics-informed machine learning

Set of partial differential equations

$$\mathcal{L}u(x)=f, \qquad x\in\Omega$$

$$\mathcal{B}u(x) = g, \qquad x \in \partial\Omega$$

Objective function

$$\mathcal{E} = \int_{\Omega} ||\mathcal{L}u^* - f||^2 dV + \int_{\partial\Omega} ||\mathcal{B}u^* - g||^2 dS$$

Optimization problem: Find $u^*(x, w_i)$ that minimizes \mathcal{E}

Physics-informed deep learning

Physics-informed neural networks (PINNs) using automatic differentiation ¹

- Data-driven solutions of partial differential equations
- Data-driven discovery of partial differential equations

Low-temperature plasma modeling applications

- Predictive, Data-Driven Model for the Anomalous Electron Collision Frequency in a Hall Effect Thruster ²
- Machine Learning Plasma-Surface Interface for Coupling Sputtering and Gas-Phase Transport Simulations³
- Fast prediction of electron-impact ionization cross sections of large molecules via machine learning ⁴
- Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma
- Determining cross sections from transport coefficients using deep neural networks ⁶
- Deep learning for thermal plasma simulation: Solving 1-D arc model as an example 7

¹Raissi, Perdikaris, Karniadakis, J. Comp. Phys. 378, 686 (2019)

²Jorns, Plasma Sources Sci. Technol. 27, 104007 (2018)

³Krüger, Gergs, Trieschmann, Plasma Sources Sci. Technol. 28, 035002 (2019)

⁴Zhong, Journal of Applied Physics 125, 183302 (2019)

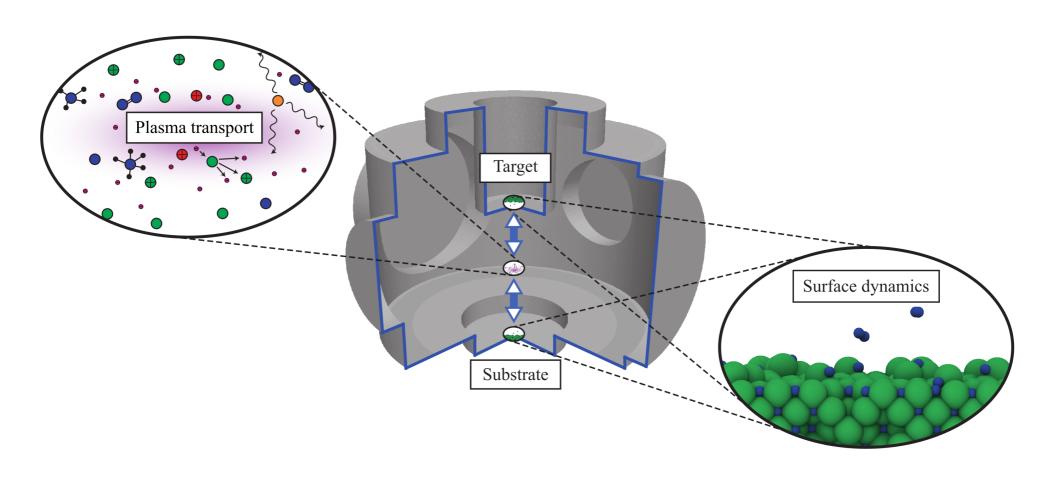
⁵Kawaguchi, Takahashi, Ohkama, Satoh, Plasma Sources Sci. Technol. 29, 025021 (2020)

⁶Stokes, Cocks, Brunger, White, Plasma Sources Sci. Technol. 29, 055009 (2020)

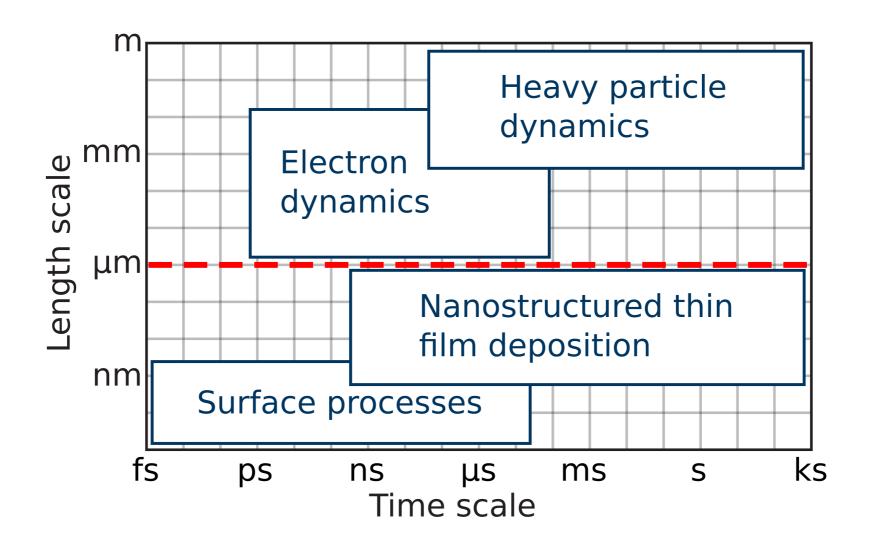
⁷Zhong, Gu, Wu, Computer Physics Communications 257, 107496 (2020)

Example: Plasma-surface model interface

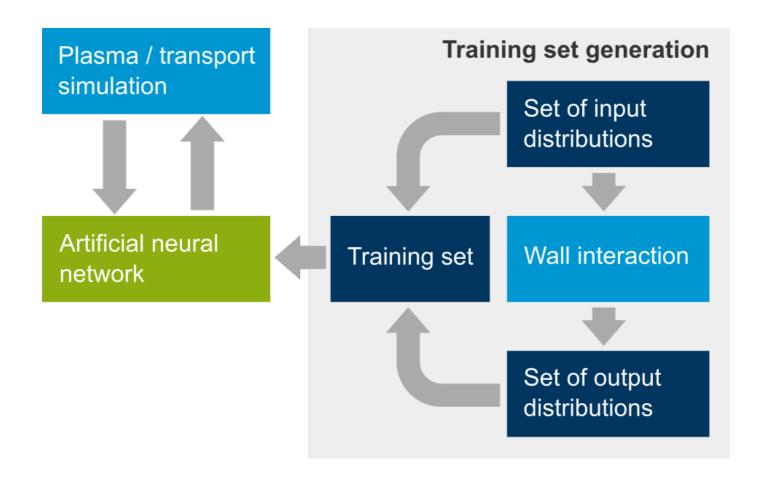
Low-temperature model representation

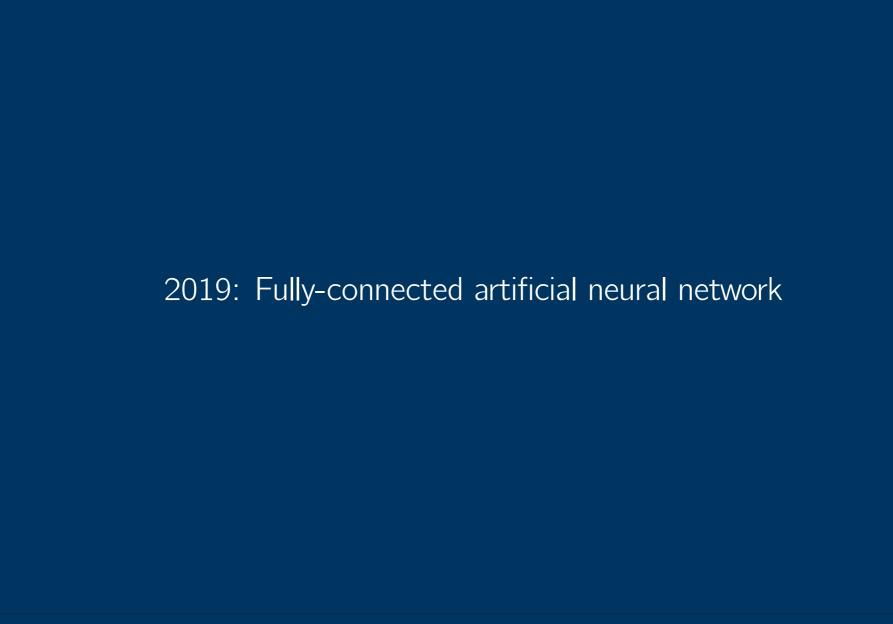


Physical scales



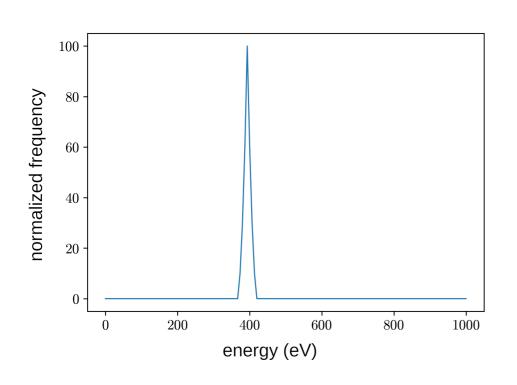
Machine learning plasma-surface interface

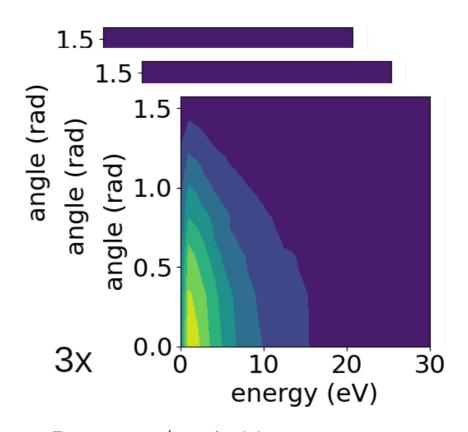




Data set: Ar on Ti(50%)-Al(50%) composite using TRIDYN

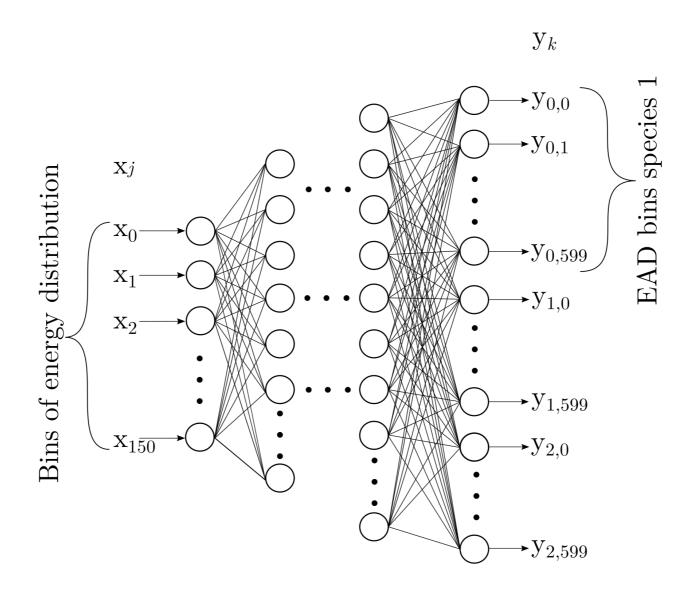
Input

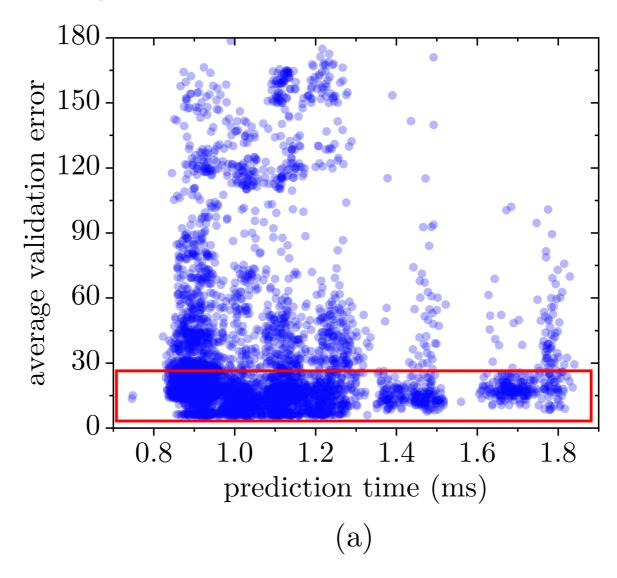




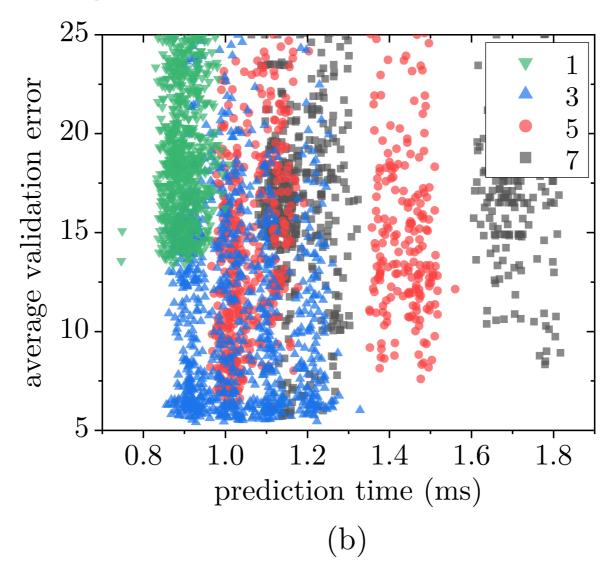
- 1D energy distribution histogram
- 439 combinations define total set
- 2D energy/angle histogram
- 3 histograms (1 for each species)

Fully-connected artificial neural network

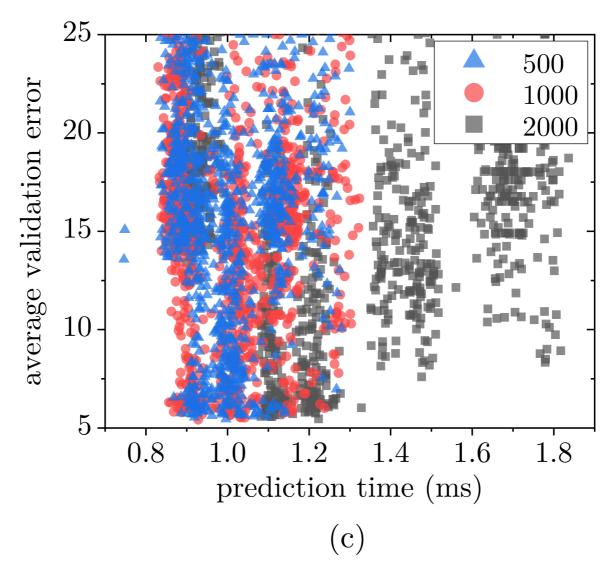




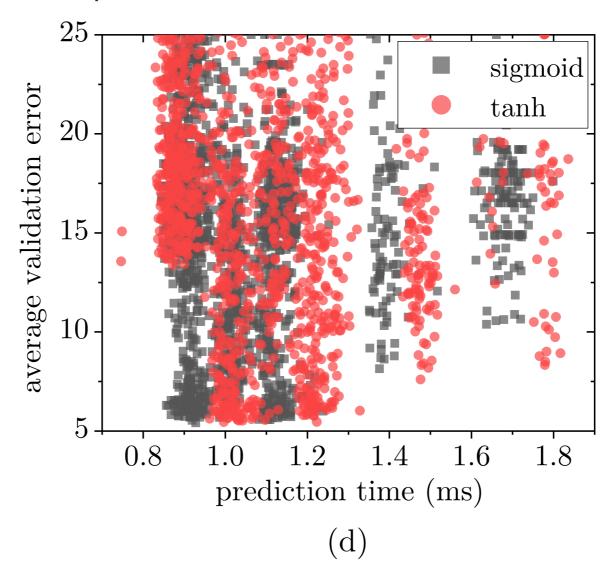
- About 600 hyperparameter combinations
- All networks fulfill prediction time requirement



- Variation: number of hidden layers
- All multilayer networks achieve low error

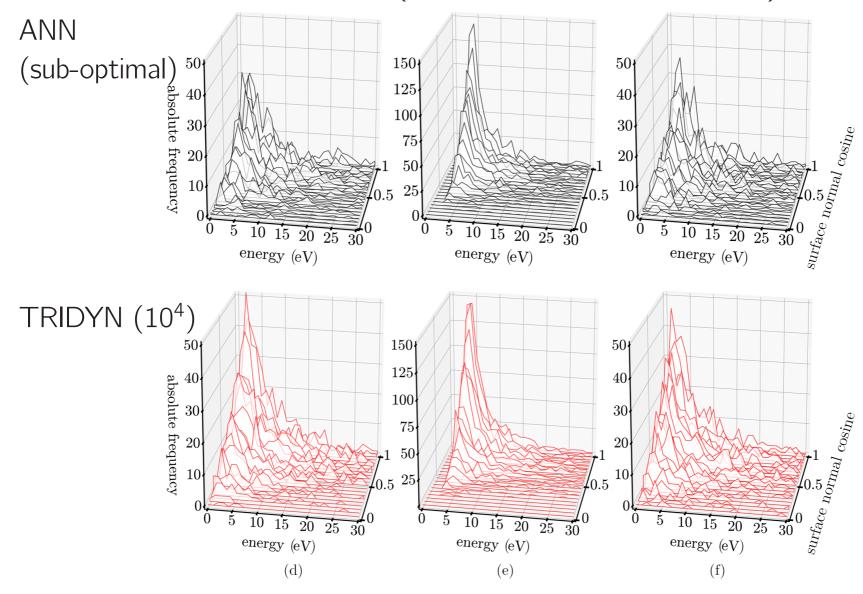


- Variation: number of nodes per activation layer
- Complexity increases prediction time, not necessarily quality



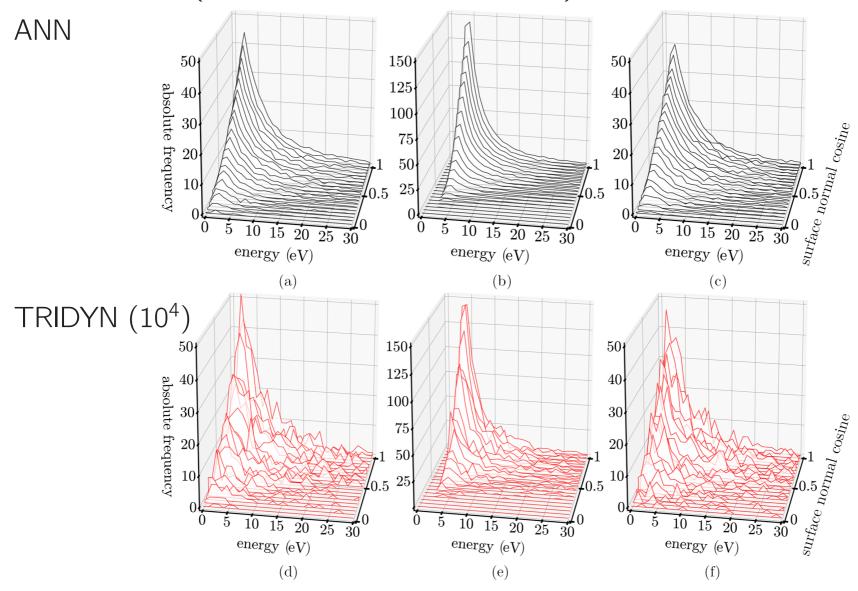
- Variation: activation function
- sigmoid less computational effort than tanh

Sub-optimal prediction (unknown data, 390 eV)



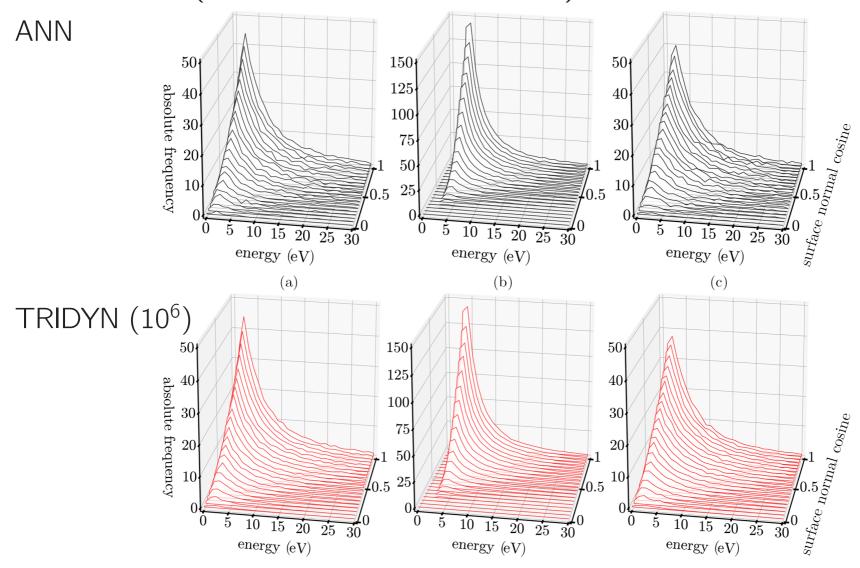
Generalization and statistical mitigation, $R_{\text{train}}^2 = 0.961$ and $R_{\text{pred}}^2 = 0.998$

Prediction (unknown data, 390 eV)



Generalization and statistical mitigation, $R_{\text{train}}^2 = 0.961$ and $R_{\text{pred}}^2 = 0.998$

Prediction (unknown data, 390 eV)



Generalization and statistical mitigation, $R_{\text{train}}^2 = 0.961$ and $R_{\text{pred}}^2 = 0.998$

How complex need this network to be?

Final optimized fully connected network structure:

- -1×151 input layer
- 3 \times 1000 hidden layers + bias
- 1 × 1800 output layer

Total of 3,955,800 weight parameters

Is this level of complexity really necessary?

How many independent parameter dimensions required?

Maxwell-Boltzmann energy distribution ightarrow 1 degree of freedom

$$f(E)dE = 2N\sqrt{\frac{E}{\pi}\left(\frac{1}{kT}\right)^3} \exp\left(-\frac{E}{kT}\right) dE$$

Sigmund-Thompson energy-angular distribution \rightarrow 4 degrees of freedom

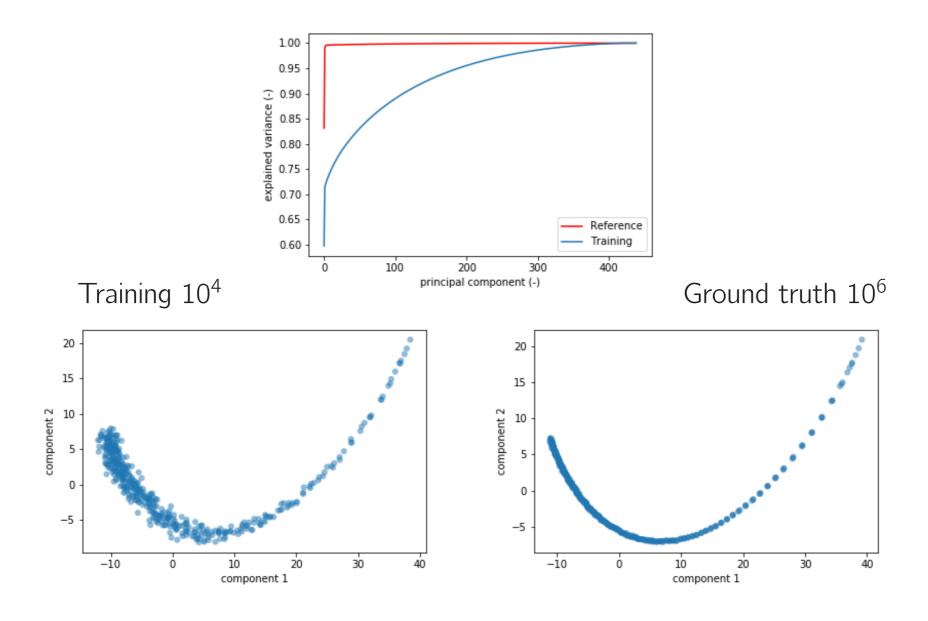
$$f(E,\theta) dE d^{2}\Omega = F_{D}(E_{0},\theta_{0}) \frac{\Gamma_{m}}{4\pi} \frac{1-m}{NC_{m}} \frac{E}{(E+U)^{3-2m}} \cos(\theta) dE d^{2}\Omega$$

Data set: Sputtering Ar on Ti-Al composite using TRIDYN

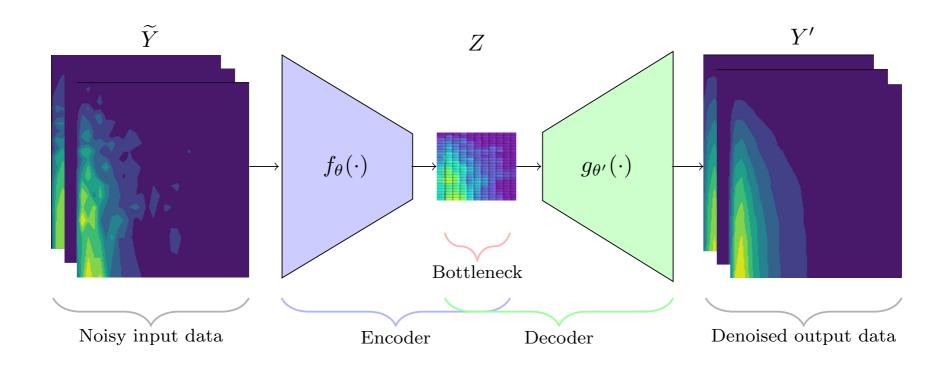
- Similar input/output relation as previous case
- 1D energy distribution histogram
- 439 combinations define single subset
- 2D energy/angle histogram
- 3 histograms (1 for each species)

- **3 different** chemical compositions x = [0.3, 0.5, 0.7] (previously **single** stoichiometry x = 0.5)
- Total of 1317 cases with 80%, 10%, 10% train/validation/test split
- Complete set with 10⁴ (training) and 10⁶ (ground truth) projectiles statistics

Principle component analysis (PCA)

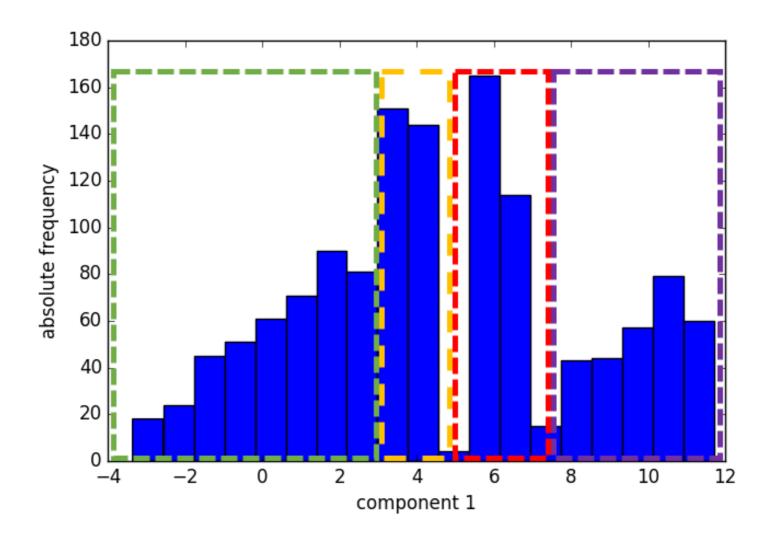


Convolutional autoencoder network

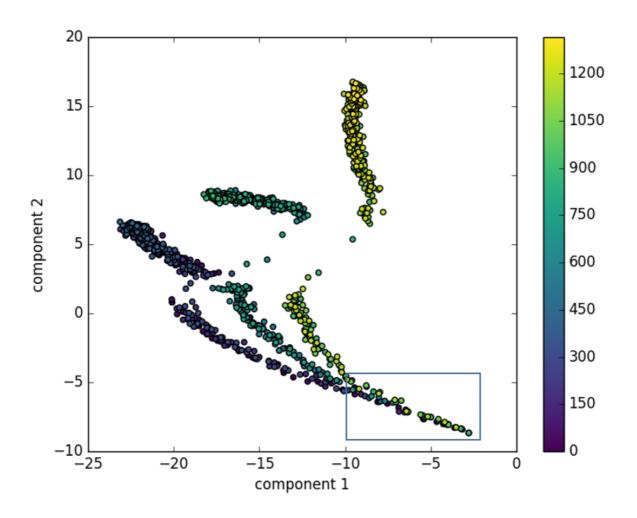


Bottleneck architecture with variable latent space dimensions

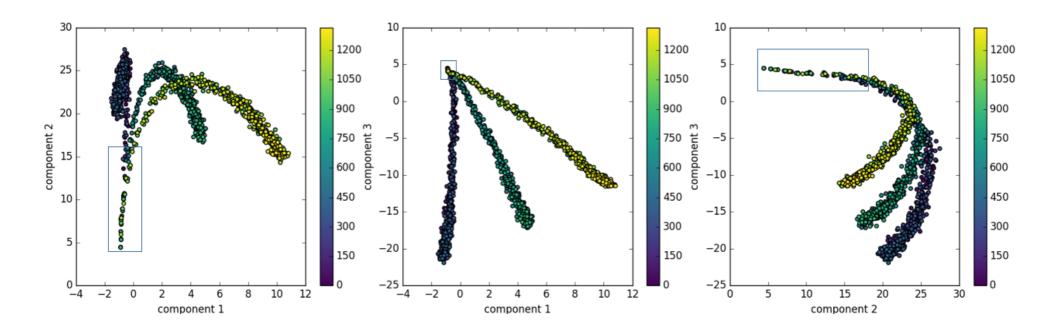
Dimensionality reduction to $D_c = 1...3$ latent space components



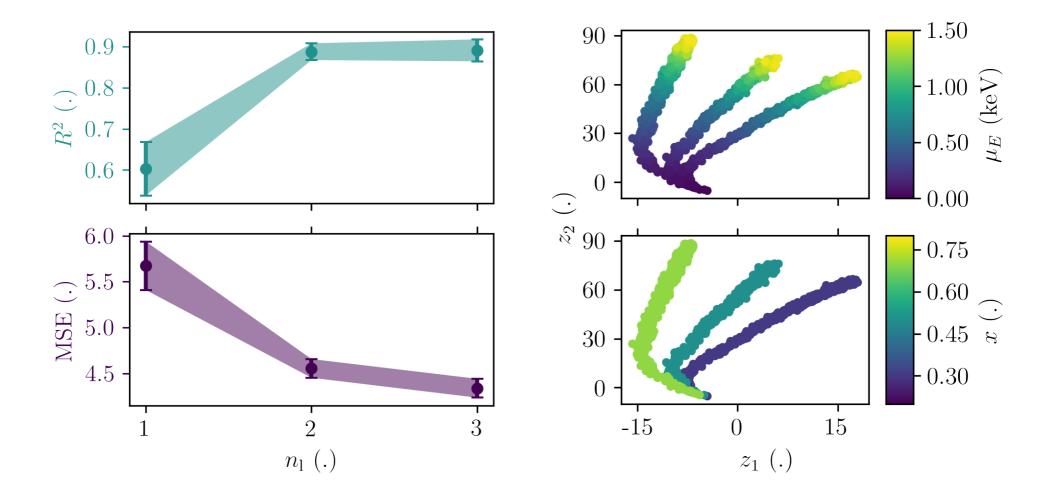
Bottleneck architecture with latent space dimensions n = 1

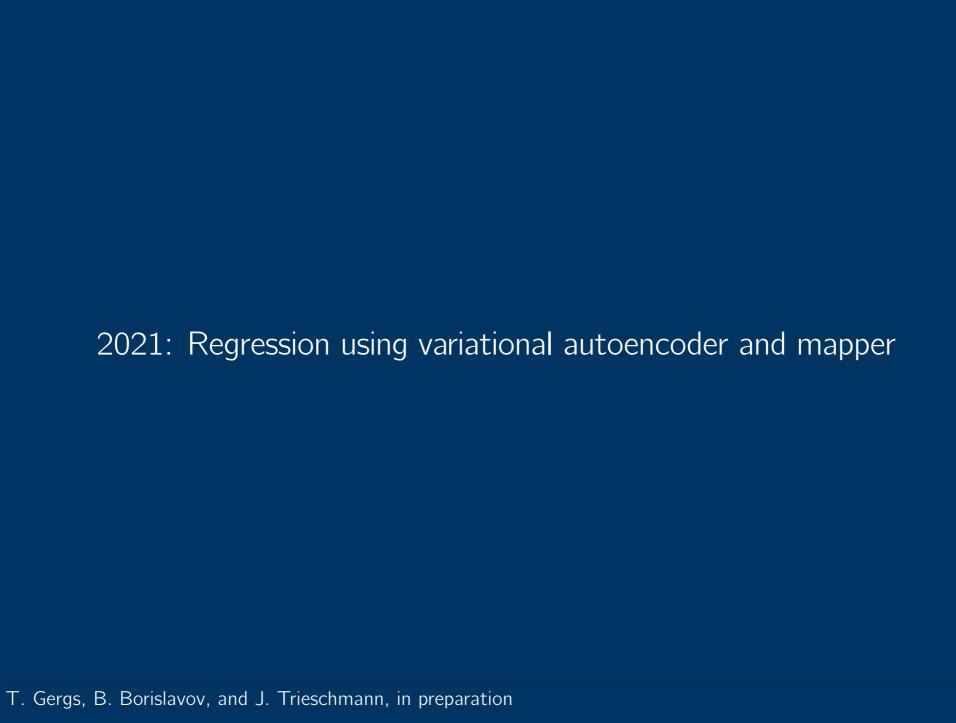


Bottleneck architecture with latent space dimensions n = 2

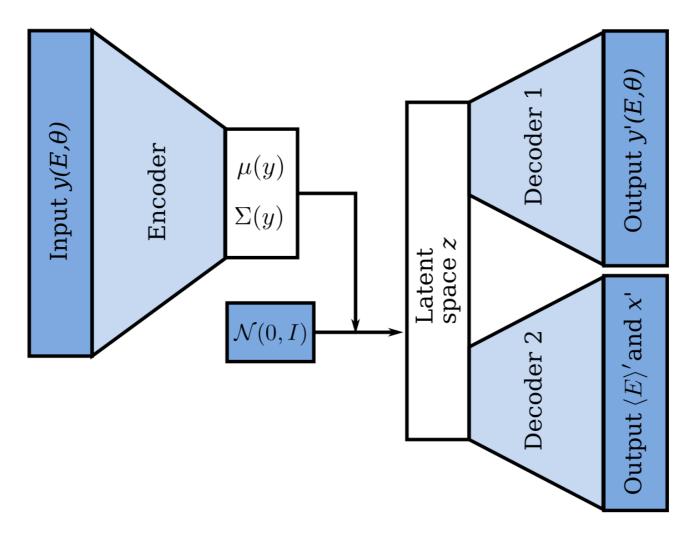


Bottleneck architecture with latent space dimensions n = 3



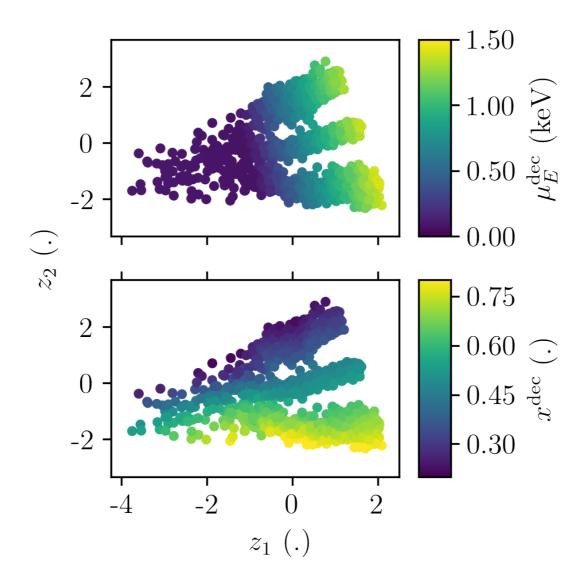


Variational autoencoder network

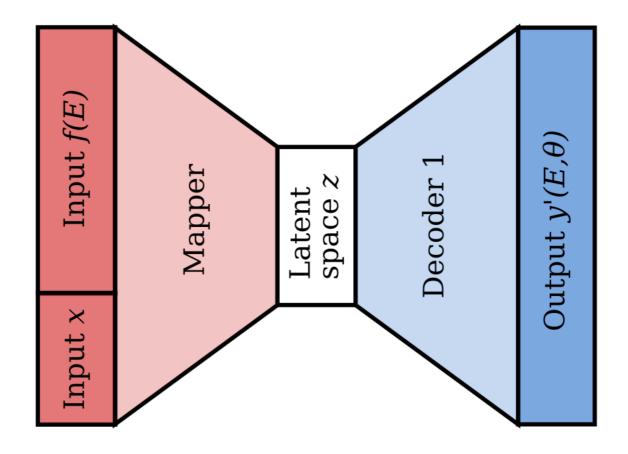


VAE with regression of mean ion energy $\langle E \rangle$ and stoichiometry x

2D latent space representation (possibly for EAD generation)

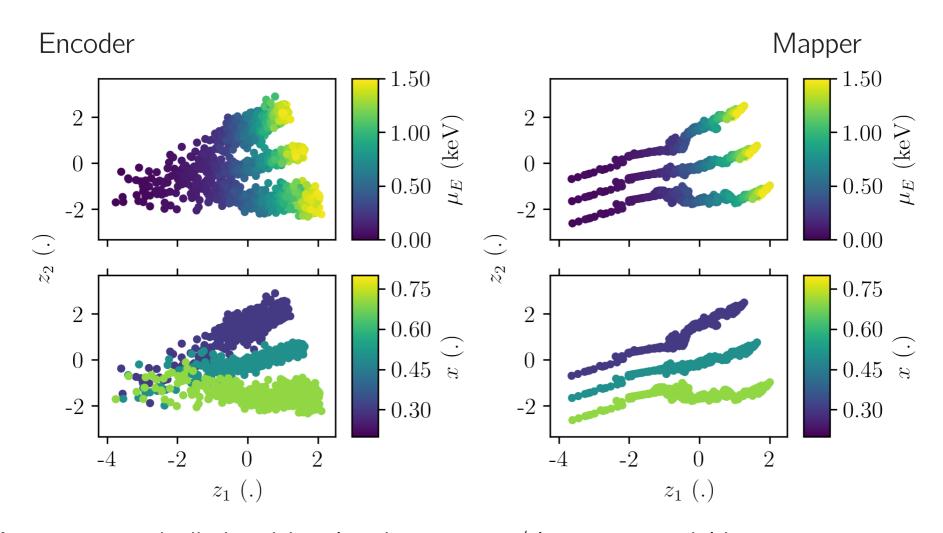


Mapper-decoder network and transfer learning



Mapper-decoder network utilizing previously trained VAE decoder

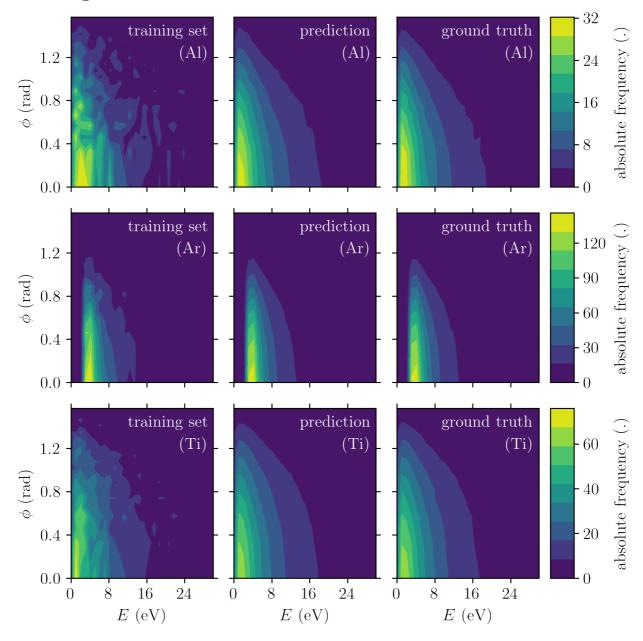
IEDF $f_{Ar^+}(E)$ and stoichiometry x as input



Mapper network distinguishes low ion energy / low sputter yield cases

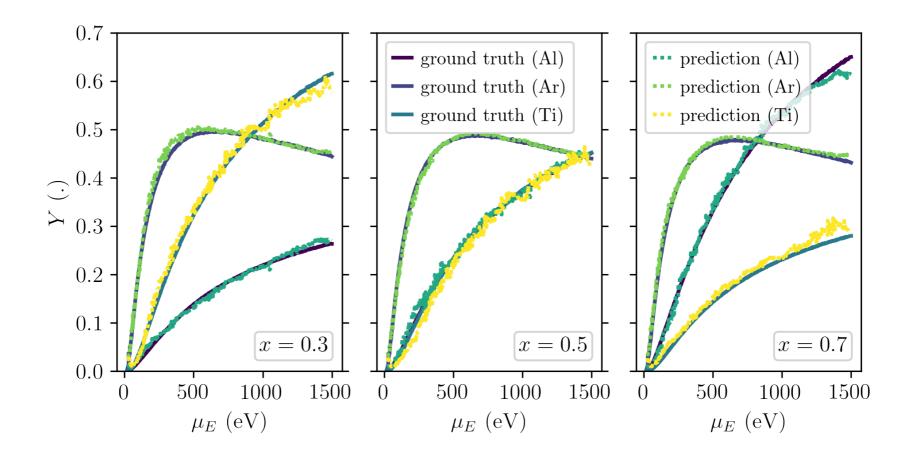
Latent space interpolation vs extrapolation

Prediction and generalization



 $R^2 = 0.99$ over complete ground truth data set

Prediction: Integrated quantities



Physics preserved also for integrated quantities across data set

How complex need this network to be?

Fully connected network structure had a total of 3,955,800 weight parameters

Final optimized convolutional mapper—decoder network:

- 358 mapper weight parameters (regression training)
- 18,135 decoder weight parameters (autoencoder training)

Total of 18,493 weight parameters

Reduced **2-dimensional parameter space** provides sufficient latent representation

Concluding remarks

- Machine learning and artificial neural networks
 - Fundamental aspects
 - Machine learning surrogate models and physics-informed representation
- Chronological example: Plasma-surface model interface
 - Fully-connected artificial neural network with 3,955,800 parameters
 - Dimensionality reduction for TRIDYN data (Ar/Ti-Al variable)
 - Regression with 358 mapper and 18,135 decoder parameters
- Diverse applications in LTP modeling as well as experiments envisioned

