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Low-temperature plasma systems
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Machine learning surrogate models

– Elementary models faster at the cost of physical fidelity

– Nonlinear multi-dimensional regression to high fidelity database

– Neural networks may break fidelity vs speed trade-off

Meneghini et al., IAEA Technical Meeting (2017)
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Outline

• Machine learning and artificial neural networks

– Forms of learning and knowledge representation

– Fully connected and convolutional neural networks, activation functions

– Loss function, backpropagation

– Overfitting, generalization

– Machine learning surrogate models and physics-informed representation

• Example: Plasma-surface model interface

– Fully-connected artificial neural network

– Dimensionality reduction for extended TRIDYN data

– Regression using variational autoencoder and mapper

• Concluding remarks
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Machine learning and artificial neural networks



Fundamental aspects



Forms of learning: Supervised

Teacher labels desired response

Haykin (2007) Neural networks and learning machines, Pearson Education
Dimitri Torterat / CC BY 2.0 FR (https://creativecommons.org/licenses/by/2.0/fr/deed.en)
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Forms of learning: Unsupervised

No teacher or critic, but task independent measure for quality of representation

Haykin (2007) Neural networks and learning machines, Pearson Education
Eatcha / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)
Leuchtender Hund / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)
Marco Singer (Caronna) / CC BY-SA (http://creativecommons.org/licenses/by-sa/3.0/)
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Knowledge representation with artifical synapses and neurons

yk = ϕ(vk) = ϕ

(∑

m

wkmxm

)

Haykin (2007) Neural networks and learning machines, Pearson Education
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Knowledge representation with artifical neural networks
Fully connected network structure Convolutional network structure

Haykin (2007) Neural networks and learning machines, Pearson Education
Goodfellow, Bengio, Courville (2016) Deep Learning, MIT Press
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Knowledge representation with artifical neural networks
Fully connected network structure Convolutional network structure

Haykin (2007) Neural networks and learning machines, Pearson Education
https://de.wikipedia.org/wiki/Datei:3D˙Convolution˙Animation.gif
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Activation functions

Threshold, sigmoid, hyperbolic tangent,

rectified linear unit functions, etc

Haykin (2007) Neural networks and learning machines, Pearson Education
Spears et al., Phys. Plasmas 25, 080901 (2018)
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Distance and loss function

Manhattan distance (L1 norm)

D1(~p,~q) = ||~p −~q||1 =
∑N

k=1 |pk − qk|

All components equally weighted

Euclidean distance (L2 norm)

D2(~p,~q) = ||~p −~q||2 =

√∑N
k=1 |pk − qk|2

Gives more weight to large outliers

Loss / cost function for example

E(~w) =
1

2

∑

~xi∈X

D2
p (~y ∗i (~xi , ~w),~yi(~xi))

https://commons.wikimedia.org/wiki/File:Vector-p-Norms˙qtl1.svg
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Backpropagation

Error signal of output neuron j :

ej(n) = dj(n)− yj(n)

Total instantaneous error energy:

E(n) =
1

2

∑

j

e2
j (n)

Output layer weight correction:

∂E(n)

∂wji(n)
=
∂E(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂vj(n)

∂vj(n)

∂wji(n)

Haykin (2007) Neural networks and learning machines, Pearson Education
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Overfitting and generalization

False adoption to uncertainties in training data due to available network complexity

Spears et al., Phys. Plasmas 25, 080901 (2018)
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Physics-informed machine learning



Physics-informed machine learning

Set of partial differential equations

Lu(x) = f , x ∈ Ω

Bu(x) = g , x ∈ ∂Ω

Objective function

E =

∫

Ω

||Lu∗ − f ||2dV +

∫

∂Ω

||Bu∗ − g ||2dS

Optimization problem: Find u∗(x ,wi) that minimizes E

Dissanayake and Phan-Thien, “Neural-network-based approximations for solving partial differential equations”,
Comm. Num. Methods Eng. 10, 195 (1994)
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Physics-informed deep learning
Physics-informed neural networks (PINNs) using automatic differentiation 1

– Data-driven solutions of partial differential equations

– Data-driven discovery of partial differential equations

Low-temperature plasma modeling applications

– Predictive, Data-Driven Model for the Anomalous Electron Collision Frequency in a Hall Effect

Thruster 2

– Machine Learning Plasma-Surface Interface for Coupling Sputtering and Gas-Phase Transport

Simulations 3

– Fast prediction of electron-impact ionization cross sections of large molecules via machine

learning 4

– Deep learning for solving the Boltzmann equation of electrons in weakly ionized plasma 5

– Determining cross sections from transport coefficients using deep neural networks 6

– Deep learning for thermal plasma simulation: Solving 1-D arc model as an example 7

1Raissi, Perdikaris, Karniadakis, J. Comp. Phys. 378, 686 (2019)
2Jorns, Plasma Sources Sci. Technol. 27, 104007 (2018)
3Krüger, Gergs, Trieschmann, Plasma Sources Sci. Technol. 28, 035002 (2019)
4Zhong, Journal of Applied Physics 125, 183302 (2019)
5Kawaguchi, Takahashi, Ohkama, Satoh, Plasma Sources Sci. Technol. 29, 025021 (2020)
6Stokes, Cocks, Brunger, White, Plasma Sources Sci. Technol. 29, 055009 (2020)
7Zhong, Gu, Wu, Computer Physics Communications 257, 107496 (2020)
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Example: Plasma-surface model interface

F. Krüger, T. Gergs, and J. Trieschmann, Plasma Sources Science and Technology 28, 035002 (2019)
DOI: 10.1088/1361-6595/ab0246



Low-temperature model representation
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Physical scales
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Machine learning plasma-surface interface
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2019: Fully-connected artificial neural network

F. Krüger, T. Gergs, and J. Trieschmann, Plasma Sources Science and Technology 28, 035002 (2019)
DOI: 10.1088/1361-6595/ab0246



Data set: Ar on Ti(50%)-Al(50%) composite using TRIDYN

Input Output

• 1D energy distribution histogram

• 439 combinations define total set

• 2D energy/angle histogram

• 3 histograms (1 for each species)

TRIDYN: W. Möller, W. Eckstein, Nucl. Instr. and Meth. Phys. Research Sect. B 2, 814 (1984)
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Fully-connected artificial neural network

Artificial neural network simulated using Keras and TensorFlow, www.tensorflow.org
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Hyperparameter space

• About 600 hyperparameter combinations

• All networks fulfill prediction time requirement
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Hyperparameter space

• Variation: number of hidden layers

• All multilayer networks achieve low error
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Hyperparameter space

• Variation: number of nodes per activation layer

• Complexity increases prediction time, not necessarily quality
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Hyperparameter space

• Variation: activation function

• sigmoid less computational effort than tanh
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Sub-optimal prediction (unknown data, 390 eV)

Generalization and statistical mitigation, R2
train = 0.961 and R2

pred = 0.998
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ANN
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Prediction (unknown data, 390 eV)

Generalization and statistical mitigation, R2
train = 0.961 and R2

pred = 0.998

24 of 41

ANN

TRIDYN (104)



Prediction (unknown data, 390 eV)

Generalization and statistical mitigation, R2
train = 0.961 and R2

pred = 0.998
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ANN

TRIDYN (106)



How complex need this network to be?

Final optimized fully connected network structure:

– 1× 151 input layer

– 3× 1000 hidden layers + bias

– 1× 1800 output layer

Total of 3,955,800 weight parameters

Is this level of complexity really necessary?
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2020: Dimensionality reduction for extended TRIDYN data

T. Gergs, B. Borislavov, and J. Trieschmann, in preparation



How many independent parameter dimensions required?

Maxwell-Boltzmann energy distribution → 1 degree of freedom

f (E)dE = 2N

√
E

π

(
1

kT

)3

exp

(
−

E

kT

)
dE

Sigmund-Thompson energy-angular distribution → 4 degrees of freedom

f (E , θ) dE d2Ω = FD(E0, θ0)
Γm

4π

1− m

NCm

E

(E + U)3−2m cos (θ) dE d2Ω

Behrisch, Eckstein (2007) Sputtering by Particle Bombardment, Springer
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Data set: Sputtering Ar on Ti-Al composite using TRIDYN

• Similar input/output relation as previous case

• 1D energy distribution histogram

• 439 combinations define single subset

• 2D energy/angle histogram

• 3 histograms (1 for each species)

• 3 different chemical compositions x = [0.3, 0.5, 0.7]

(previously single stoichiometry x = 0.5)

• Total of 1317 cases with 80%, 10%, 10% train/validation/test split

• Complete set with 104 (training) and 106 (ground truth) projectiles statistics

Input from TRIDYN: W. Möller, W. Eckstein, Nucl. Instr. and Meth. Phys. Research Sect. B 2, 814 (1984)
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Principle component analysis (PCA)
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Training 104 Ground truth 106



Convolutional autoencoder network

gθ′(·)fθ(·)

Ỹ Y ′
Z

Encoder Decoder

Bottleneck

Noisy input data Denoised output data

Bottleneck architecture with variable latent space dimensions

Dimensionality reduction to Dc = 1 ... 3 latent space components

G.E. Hinton and R.R. Salakhutdinov, Science 313, 504 (2006)
Artificial neural network simulated using Keras and TensorFlow, www.tensorflow.org
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Latent space representation

Bottleneck architecture with latent space dimensions n = 1
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Latent space representation

Bottleneck architecture with latent space dimensions n = 2
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Latent space representation

Bottleneck architecture with latent space dimensions n = 3
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Latent space representation
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2021: Regression using variational autoencoder and mapper

T. Gergs, B. Borislavov, and J. Trieschmann, in preparation



Variational autoencoder network

VAE with regression of mean ion energy 〈E〉 and stoichiometry x

Artificial neural network simulated using Keras and TensorFlow, www.tensorflow.org
G.E. Hinton and R.R. Salakhutdinov, Science 313, 504 (2006)
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2D latent space representation (possibly for EAD generation)
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Mapper–decoder network and transfer learning

Mapper-decoder network utilizing previously trained VAE decoder

IEDF fAr+(E) and stoichiometry x as input

Artificial neural network simulated using Keras and TensorFlow, www.tensorflow.org
G.E. Hinton and R.R. Salakhutdinov, Science 313, 504 (2006)
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2D latent space representation

Encoder Mapper

Mapper network distinguishes low ion energy / low sputter yield cases

Latent space interpolation vs extrapolation
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Prediction and generalization

38 of 41
R2 = 0.99 over complete ground truth data set



Prediction: Integrated quantities

Physics preserved also for integrated quantities across data set
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How complex need this network to be?

Fully connected network structure had a total of 3,955,800 weight parameters

Final optimized convolutional mapper–decoder network:

– 358 mapper weight parameters (regression training)

– 18,135 decoder weight parameters (autoencoder training)

Total of 18,493 weight parameters

Reduced 2-dimensional parameter space provides sufficient latent representation
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Concluding remarks

• Machine learning and artificial neural networks

– Fundamental aspects

– Machine learning surrogate models and physics-informed representation

• Chronological example: Plasma-surface model interface

– Fully-connected artificial neural network with 3,955,800 parameters

– Dimensionality reduction for TRIDYN data (Ar/Ti-Al variable)

– Regression with 358 mapper and 18,135 decoder parameters

• Diverse applications in LTP modeling as well as experiments envisioned
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