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Introduction

Guidance for this presentation was one of a tutorial or review nature.

What do we do that is “special”:

Large scale PIC-DSMC on 3D unstructured meshes

(and lots of other detailed models: surface models, photonic processes, …)

The goal of this talk is to give an introduction to large-scale, 3D, unstructured mesh, PIC-DSMC 

simulations, and an overview of some of the challenges.

The target audience is a plasma physics non-expert or graduate student interested in 

computational modeling of low temperature plasmas.
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Motivation

Sandia National Laboratories is one of the National 

Nuclear Security Administration laboratories in the US 

Department of Energy (as are Los Alamos and Lawrence 

Livermore).

Our national security mission requires understanding 

(modeling) many different kinds of low temperature 

plasma systems:

• Vacuum arcs for failure and operation (high voltage 

electronics, insulator flashover, switches, space)

• Low pressure discharges (plasma processing, high 

altitude)

• Atmospheric pressure discharges (high energy arcing 

faults, lightning, switches)

Not all work is public, which includes a lot of great 

complex, technical work.

Annual budget: $3.9B

Approximately 50% NNSA weapons

14,600 employees in 2021



4

Motivation

Sometimes fundamental physics investigations in simplified systems are sufficient, but other 

times we need to simulate behavior in full 3D.

Considering vacuum arc expansion in 3D, Debye lengths can vary over many orders of 

magnitude.

Regular Cartesian meshes (or “outer product” compositions) are not sufficient.

One alternative approach is unstructured meshes. Other alternatives include adaptive mesh 

refinement (AMR) of Cartesian meshes, or mesh-free methods (which often are not really 

mesh-free!). All approaches have pros and cons.

Problems can be extremely important: huge effort in verification and validation (V&V).
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Outline

1. Introduction to the PIC(-DSMC) method

2. Steps to support unstructured mesh and large-scale/3D models

3. Examples
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The Boltzmann Equation

The particle methods we use generate solutions to the Boltzmann equation,

where

f(x, v, t) = distribution function in phase space,

x = particle location,

v = particle velocity,

F = external applied force, and

(∂f/∂t)coll represents changes due to particle collisions.

For example, 𝑛 𝑥, 𝑡 = 𝑓׬ 𝑥, 𝑣, 𝑡 𝑑𝑣.

In 3D the Boltzmann equation is 7-dimensional (!).

𝜕𝑓

𝜕𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 + 𝐹 ⋅ ∇𝑣𝑓 =

𝜕𝑓

𝜕𝑡
𝑐𝑜𝑙𝑙
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The Boltzmann Equation

We discretize the Boltzmann equation in space and time.

We discretize the spatial portion of (x, v) phase space by employing a mesh.

We discretize in time by using a time integration method over discrete time steps tn, tn+1, …

This effectively reduces the problem to evolving the velocity distribution function (vdf) in each 

cell and over each time step:

We also sometimes use 𝑓 as if it were an energy distribution function. And we often drop the 

explicit connection to the discretization.

(There are attempts to solve a full Boltzmann equation.)

𝑓 𝑥𝑖 , 𝑡𝑛, 𝑣 → 𝑓 𝑥𝑖 , 𝑡𝑛+1, 𝑣 , or

𝑓𝑐𝑒𝑙𝑙,𝑛(𝑣) → 𝑓𝑐𝑒𝑙𝑙,𝑛+1(𝑣).



8

The Boltzmann Equation

We approximate/discretize 𝑓(𝑣) in each cell by a discrete set of particles with individual 

velocities. Because the physical number of particles in a cell can be quite large, we will further 

approximate the vdf by assuming each computational particle (or notional particle) represents 

some number of real ones.

This real-to-computational particle ratio is referred to as the “macroparticle weight” or just 

“particle weight”, wp.

The basic solution methodology advances a set of computational particles in a mesh from one 

discrete time to another accounting for particle motion, particle forces, and particle collisions.

Unlike continuum methods where densities, velocities, energies (temperatures), etc., are the 

primary “solution variables”, the primary “solution variables” in the kinetic methods we use are 

particle positions and particle velocities. Everything else is derived from this.
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Particle-in-Cell (PIC)

PIC is focused on part of the Boltzmann equation,

where PIC typically assumes collisionless particles (RHS = 0).

Replacing F with electric and magnetic forces,

gives us the Vlasov equation with q the particle charge, E the electric field, and B the magnetic 

field. We consider the electrostatic (ES) case where we assume B = 0,

and will couple to Poisson’s equation, although there are many electromagnetic (EM) PIC 

codes that couple to Maxwell’s equations and solve for a consistent B.

𝜕𝑓

𝜕𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 +

𝑞

𝑚
𝐸 + 𝑣 × 𝐵 ⋅ ∇𝑣𝑓 = 0

𝜕𝑓

𝜕𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 +

𝑞𝐸

𝑚
⋅ ∇𝑣𝑓 = 0

𝜕𝑓

𝜕𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 + 𝐹 ⋅ ∇𝑣𝑓 =

𝜕𝑓

𝜕𝑡
𝑐𝑜𝑙𝑙

An alternative derivation 

goes through the 

Klimontovich equation.
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Particle-in-Cell (PIC)

In addition to integrating charged particle trajectories, we need to solve Poisson’s equation,

where ε0 is the permittivity of free space, ni,total is total ion number density (written assuming 

only single ionizations for simplicity) and ne is electron number density. We generally don’t care 

about V directly but need to compute the electric field,                .

There are many ways to solve Poisson’s equation.

If using a Cartesian mesh with fixed spacing a finite difference method (FDM) is a great choice.

Much of the numerical analysis diversity of PIC methods involve representations of 𝜌, and how 

𝐸 is computed at particle locations, giving different interpolation/approximation orders. Higher 

order approximations generally require larger computational stencils.

∇ 𝜀0∇𝑉 = −𝜌 = 𝑞𝑒(𝑛𝑖,𝑡𝑜𝑡𝑎𝑙 − 𝑛𝑒)

𝐸 = −∇𝑉
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Particle-in-Cell (PIC)

Because the Poisson equation is elliptic the overall method is globally coupled and requires 

solution of a global linear system. This has considerable impact on parallel implementations 

and performance.

It can also cause instantaneous “action-at-a-distance”. For finite perturbation speed you need to 

use an EM method.

The methodology described here is explicit in time. There are methods that are semi-implicit, 

and even fully implicit (with significant caveats).
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Particle-in-Cell (PIC)

Basic ES PIC iteration to advance from time step n to n+1 uses a time-splitting method:

1. Update particle velocities over Δt/2 and positions with Δt,

2. Solve Poisson’s equation to get new fields,

3. Compute final update to velocities with new forces,

𝑣𝑖
𝑛+1/2

= 𝑣𝑖
𝑛 +

𝑞𝑖𝐸
𝑛(𝑥𝑖

𝑛)

𝑚𝑖

Δ𝑡

2

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + 𝑣𝑖
𝑛+1/2

Δ𝑡

∇ 𝜀0∇𝑉
𝑛+1 = −𝜌 = 𝑞𝑒(𝑛𝑖

𝑛+1 − 𝑛𝑒
𝑛+1)

𝐸𝑛+1 = −∇𝑉𝑛+1

𝑣𝑖
𝑛+1 = 𝑣𝑖

𝑛+1/2
+
𝑞𝑒𝐸

𝑛+1(𝑥𝑖
𝑛+1)

𝑚𝑖

Δ𝑡

2
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Particle-in-Cell (PIC)

Requirements/assumptions for employing ES PIC include:

1. Cell sizes must resolve Debye length λD to avoid numerical heating,

2. Time step must resolve plasma frequency ωp,

3. Should satisfy Courant-Friedrichs-Lewy (CFL) condition similar to continuum CFD,

Δ𝑥 < 𝜆𝐷 =
𝑘𝐵𝑇𝑒𝜀0

𝑛𝑒𝑞𝑒
2

Δ𝑡 <
2

𝜔𝑝
= 2

𝜀0𝑚𝑒

𝑛𝑒𝑞𝑒
2

Δ𝑡 <
Δ𝑥

𝑣𝑚𝑎𝑥
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Particle-in-Cell (PIC)

Requirements/assumptions for employing ES PIC include: (cont.)

4. Electrostatic solvers usually expect some resolution of |grad(V)| or |grad(V)|2. It is often 

unclear how to interpret this as there are combinations of quasi-neutral plasma, non-neutral 

regions, and high applied fields.

These constraints would ideally apply to the most extreme constraints (minimum λD, maximum 

ωp, maximum 𝑣 on minimum Δx), but because particle properties are stochastic this cannot be 

guaranteed. This is a recurring theme in kinetic particle methods.

Often, the thermal speed is used for 𝑣𝑚𝑎𝑥; caveat emptor!
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Direct Simulation Monte Carlo (DSMC)

DSMC is focused on computing solutions to a different part of the Boltzmann equation,

where DSMC typically assumes F = 0 (no external forces).

DSMC is a completely local method. Only information within a computational cell is required.  It 

is “embarrassingly parallelizable”. Not true for electrostatic PIC.

Within a single cell actual particle locations are assumed irrelevant; all particles in the cell are 

candidates to collide with all other particles in a cell.

Assume instantaneous binary collisions separate from motion.

The Monte Carlo Collision (MCC) method can be used when one of the reactant species is 

assumed fixed (or perhaps solved by a fluid method).

𝜕𝑓

𝜕𝑡
+ 𝑣 ⋅ ∇𝑥𝑓 + 𝐹 ⋅ ∇𝑣𝑓 =

𝜕𝑓

𝜕𝑡
𝑐𝑜𝑙𝑙
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Direct Simulation Monte Carlo (DSMC)

Requirements/assumptions for employing no-time-counter DSMC include:

1. Cell size must resolve the collision mean free path λmfp (and other vdf gradient length scales),

2. Time step must resolve collision frequency 𝜈𝑐,

These constraints would ideally apply to the most extreme constraints (minimum λmfp and 

maximum 𝜈𝑐), but because particle properties are stochastic this cannot be guaranteed. This is 

a recurring theme in kinetic particle methods.

Δ𝑥 < 𝜆𝑚𝑓𝑝 =
1

𝑛𝜎

Δ𝑡 < 𝜈𝑐
−1 =

𝜆𝑚𝑓𝑝

𝑣
=

1

𝑛𝜎𝑣
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Particle Weights

Particle weights, 𝑤𝑝, determine the number of computational particles in a cell. Number of 

computational particles in a cell determines how well the vdf is resolved. Usually, particles 

within a collection of cells are aggregated for vdf analysis. The collection extent can be 

complicated. Different species can have different particle weights. Dynamic problems (e.g., 

discharge) require dynamic particle weighting.

For PIC, cells can have 0 particles, or 1 particle, and all is well.

For DSMC, to resolve collision rates, the rule of thumb for neutral species is 30 particles per 

cell. We will typically use:

background neutral species: 10

excited states and fast neutrals: 20

ions: 40

electrons: 200

Actual numbers are very problem dependent and should be checked for convergence issues. 

(Skipping long story about proper solution verification)
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3D Particle Weights

For many problems, especially at high (atmospheric) pressure, Δ𝑥 ≤ 1 μm.

In 2D, this results in volumes < 10-12 m3.

In 3D, this results in volumes < 10-18 m3.

Using a particle weight of 𝑤𝑝 = 1 means the “floor” for intensive quantities (e.g., number density) is 

quite high, i.e., minimum representable number density is 1018 m-3.

For well-resolved vdf’s, we may want 200+ particles/cell → particle weights in 3D can be << 1. What 

does this mean? Concerns about textbook/model “uniform background” vs. real-world background.

For discharge simulations, one “advantage” of a tiny particle weight is the exponential multiplicative 

effect is essentially guaranteed to begin at t = 0.

Circuit noise is also impacted with a lower particle weight.
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PIC-DSMC Simulation Requirements

Δ𝑥 < 𝜆𝐷 =
𝑘𝐵𝑇𝑒𝜀0

𝑛𝑒𝑞𝑒
2

Δ𝑡 <
2

𝜔𝑝
= 2

𝜀0𝑚𝑒

𝑛𝑒𝑞𝑒
2

Δ𝑡 <
Δ𝑥

𝑣𝑚𝑎𝑥

Δ𝑥 < 𝜆𝑚𝑓𝑝 =
1

𝑛𝜎

Δ𝑡 < 𝜈𝑐
−1 =

𝜆𝑚𝑓𝑝

𝑣
=

1

𝑛𝜎𝑣

Once physics determines Δ𝑥 and Δ𝑡, and 𝑤𝑝 is selected,

computational work scales as P·T·Ld,

P = pressure, T = total time, L = domain length, d = dimension (0, 1, 2, 3)

(for similar P)
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Unstructured Meshes: Particle Push

• Particle push from PIC algorithm: move from 

𝑥𝑛 to 𝑥𝑛+1. In Cartesian meshes, final 

particle location lookup is “easy”. 

• In unstructured meshes, we pass the 

particle from cell to cell.

• Especially critical in parallel!

proc 1

proc 2

proc 3

Particle push algorithm:

compute 𝑥𝑛+1 for all particles on this processor

while(particles still to move on any processor):

for each particle on this processor:

if particle intersected edge,

update cell owner, or

store in lists to send to other processors

send lists to other processors

receive lists from other processors
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Solving Poisson’s Equation

Solving large-scale/3D discretizations of Poisson’s equation requires use of advanced linear 

solver technology.

Cartesian meshes typically discretize via the finite different method (FDM).

Unstructured meshes typically discretize via the finite element method (FEM).

Letting 𝐴 = linear system from discretization method, 𝑥 = solution vector of unknown potentials 

(𝑉), and 𝑏 = right-hand side (𝜌), instead of solving

𝐴𝑥 = 𝑏,

directly (not possible for large/3D problems), we use iterative solvers (e.g., CG or GMRES) and 

compute a pre-conditioner 𝑀 so that 𝑀 ∼ 𝐴−1. Typically only 𝑦 = 𝑀𝐴𝑥 operations are required,

𝑥𝑘+1 = 𝑆(𝑥𝑘 , 𝑏,𝑀, 𝐴)

Incomplete LU factorizations are a popular class of preconditioners. At very large scale, these 

become ineffective and multilevel/algebraic multigrid methods are employed (with coarsening 

and cycling).
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Aleph Simulation Tool Capabilities

• 1, 2, or 3D Cartesian

• Unstructured FEM (compatible with CAD)

• Massively parallel

• PIC + DSMC (PIC-MCC)

• Electrostatics

• Fixed B field

• Solid conduction

• Advanced surface (electrode/dielectric) models

• Advanced particle weighting methods

• Dynamic load balancing (tricky)

• e- approximations (quasi-neutral ambipolar, Boltzmann)

• Collisions, charge exchange, chemistry, excited states, ionization

• Finite-rate n-body reactions

• Photon transport, photoemission, photoionization, photoexcitation, radiative transitions

• Dual mesh (Particle and Electrostatics/Output)

• Restart (with all particles)

• Agile software infrastructure for extending BCs, post-processed quantities, etc.

• Currently utilizing up to 64K processors (>1B elements, >1B particles)
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Timing Information

Run:  134433 (99.8035%) [500000]

Particles:  39735.1 (29.5575%) [1500000]

Repopulate:  23.3093 (0.0586616%) [500000]

Apply_BCs:  0.209268 (0.000526659%) [500000]

Verlet_Initial:  4944.07 (12.4426%) [500000]

Find_Intersections:  22487.9 (56.5947%) [500000]

Locate:  7271.57 (32.3354%) [2021576]

Communicate:  1506.68 (6.69994%) [2021576]

Send_Recv_All:  818.395 (54.3178%) [2021576]

Pre_Send:  301.774 (36.8739%) [2021576]

Wait_Recv_Count:  118.126 (14.4338%) [2021576]

Recv_Data:  344.948 (42.1493%) [2021576]

Flush_Sends:  50.3211 (6.14876%) [2021576]

Other:  3.22621 (0.394212%) [0]

Allocate_Mem:  0.27693 (0.0183802%) [2021576]

Mem_Copy:  46.9851 (3.11846%) [2021576]

Allreduce:  638.79 (42.3972%) [2021576]

Other:  2.23195 (0.148137%) [0]

Sort_1:  11972.4 (53.2391%) [500000]

Sort_Memory:  11962.6 (99.9179%) [500000]

Other:  9.82558 (0.0820688%) [0]

Elemental_Coords_1:  0.0538756 (0.000239575%) [500000]

Other:  1737.27 (7.72532%) [0]

Inject_Provided_Particles:  0.184597 (0.000464569%) [500000]

Sort_1:  0.0610631 (0.000153675%) [500000]

Compute_F:  11031.9 (27.7636%) [500000]

Interactions:  336.008 (0.84562%) [50000]

Sort_2:  891.465 (2.24352%) [500000]

Sort_Memory:  891.265 (99.9776%) [50000]

Other:  0.199597 (0.0223897%) [0]

Other:  19.9512 (0.0502105%) [0]

Fields:  33280 (24.7558%) [500000]

Compute_V:  31078.4 (93.3844%) [500000]

Precompute:  0.416644 (0.00134062%) [500000]

Potential_Field_Solve:  0.0879288 (21.104%) [500000]

Other:  0.328716 (78.896%) [0]

Compute:  31068.1 (99.9669%) [500000]

Potential_Field_Solve:  31067.8 (99.999%) [500000]

Assemble_RHS:  7192.57 (23.1512%) [500000]

Idle_At_Rho_Copy:  854.922 (11.8862%) [500000]

Rho_Intermesh_Copy:  4886.77 (67.9419%) [500000]
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Timing Information
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Problem Sizing

It can be complicated to know how many 

processors are required.

Typically, 1,000 – 100,000 cells/processor, 

100,000 particles/processor.

Dynamic problems can be very, very, 

challenging to size. Requires good load 

balancing.
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Example: 3D Microscale Discharge in 655 Torr Neon

Experiment uses 1-4 cylindrical 
50 µm radius cavities (up to 
200 µm deep) all connected to 
the same ballast resistor-in-
series circuit.

HV

332kΩ

Si

Top Metal

~10 MΩ internal

Chamber 

backfilled with 

He, Ne or Ar at 

pressure P
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Example: 3D Microscale Discharge in 655 Torr Neon

Computational Parameters
Targeting ne- < 1020/m3, Te = 4 eV,

λD > 1.1 µm → Δx < 1.1 um, [Debye length]
λmfp > 1.6 µm → Δx < 1.6 um, [Collision mean free path]

Use Δx = 1.0 µm.
Targeting ΔV < 200 V, vmax = maximum e- speed (~ 9.4 x 106 m/s including thermal),

ωp < 5.6 x 1011/s → Δt < 3.5 ps, [Plasma e- frequency]
Δt < Δx/vmax→ Δt < 100 fs, [CFL]
Δtcollide < (nNeσmaxvmax)

-1
→ Δt < 170 fs, [Collision frequency]

Use Δt = 50 fs.
Use 𝑤𝑝 = 0.01 (initially)

Experiment Model
655 Torr 300 K Ne 655 Torr 300 K Ne (nNe = 2.1 x 1025/m3)
332 kΩ resistor-in-series w/circuit elements VA = VPS – IR, R = 332 kΩ, I averaged ~ 10 ps
50 µm radius, 200 µm depth, 10 µm spacer 50 µm radius, 200 µm depth, 10 µm spacer
1-4 full microcavities Single 3D 20 degree sector 
Full chemistry Ionization, excitation, elastic (6 tracked species), from 

LXCat, www.lxcat.net
ε = 3 10 µm polyimide dielectric ε = 3 10 µm polyimide dielectric w/ surface charging

SEE γ = 0.15 for Ne+

http://www.lxcat.net/
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cathode
surfaces

Example: 3D Microscale Discharge in 655 Torr Neon

anode
surfaces

1
0

 µ
m

1 µm tall trickle 
current surface,
1 µA for 10 ns

Unstructured mesh 
used in simulations. 
~3.1M elements.
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e- Ne+ Ne++

Ne(1s2,4) Ne(1s3,5) Ne(2p)
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Time-resolved results varying drive voltage over 50-350 V. 

Breakdown  at 200 +/- 50 V. Calibrated Paschen model (A = 

4.4/Torr/cm, B = 111 V/Torr/cm) estimates 210 V.

Each simulation is 48 hours on 512 cores. Results required 

multiple restarts (each different color above is a separate 

simulation).

Example: 3D Microscale Discharge in 655 Torr Neon

350 V

300 V

250 V

200 V

Steady state voltages 

approach ~145 V, a feature 

shared by normal glow 

discharges. This compares 

very well to a prior steady 

state study for a similar (not 

identical) system by Kushner.
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e- vdf Ne+ vdf
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Example: 3D Pin-to-Plane Streamer in 600 Torr Air

4x coarser mesh for clarity

Total # elements (45°)  ~100,000,000

Total # particles ~250,000,000

Maximum # processors = 8,192

Smallest Δ𝑥 ~3 um

Δ𝑡 = 10-12 s
Does not resolve; still working it!
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Example: 3D Pin-to-Plane Streamer in 600 Torr Air

Total of ~50 species, ~125 interactions, 

~100 radiative transitions
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Example: 3D Pin-to-Plane Streamer in 600 Torr Air

1021 m-3

1018 m-3
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Example: 3D “Vacuum” Arc

4.5 5 5.5 6

-1

-0.5

0

• In vacuum or 4 Torr Ar background

• 1.5 mm inner-to-inner distance

• 0.75 mm diameter electrodes

• Copper electrodes (this picture is Cu-Ti)

• 2 kV drop across electrodes

• 20 Ω resistor in series

• Steady conditions around 50V, 100A

• Breakdown time << 100ns

• To meet an ionization mean free path of 1.5 mm at 
maximum σ, nbg ~ 1016 – 1017 #/cm3

3D computational 
domain

cathode

anode
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What Was Not Discussed?

• Adaptive mesh refinement

• Dynamic particle weighting

• Load balancing

• No formal foundation for unstructured PIC

• Hybrid modeling

• GPUs vs. CPUs (next generation SNL code, EMPIRE, is in development, EM-PIC-DSMC-

hybrid)
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Thank You!

Thanks to the many collaborators who contributed to the modeling discussed here, especially:

Matthew Bettencourt

Jeremiah Boerner

Paul Crozier

Andrew Fierro

Russell Hooper

Ashish Jindal

Christopher Moore

If interested in pursuing collaborations, please visit our Low Temperature 

Plasma Research Facility webpage, http://www.sandia.gov/prf/, funded 

by the US DOE Office of Science, Office of Fusion Energy Science.

Direct access to Aleph requires US citizenship.

My e-mail: mmhopki@sandia.gov

http://www.sandia.gov/prf/

