Moment (multi-fluid) models for low-pressure discharges

Alejandro Alvarez Laguna

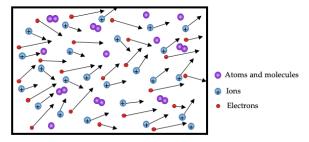
alvarez@lpp.polytechnique.fr

Laboratoire de physique des plasmas

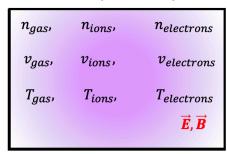
Outline of the talk

Part I: From microscopic to macroscopic

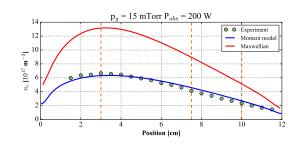
Microscopic description

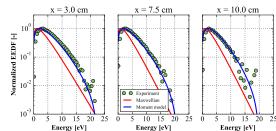


Macroscopic description

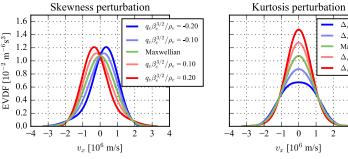


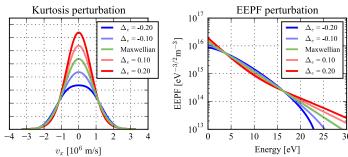
Part III: Resolution of the moment equations and comparison to experiments



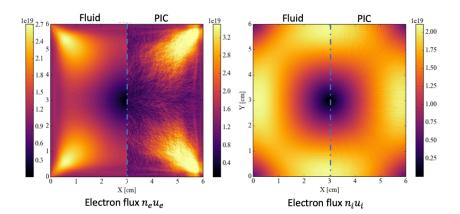


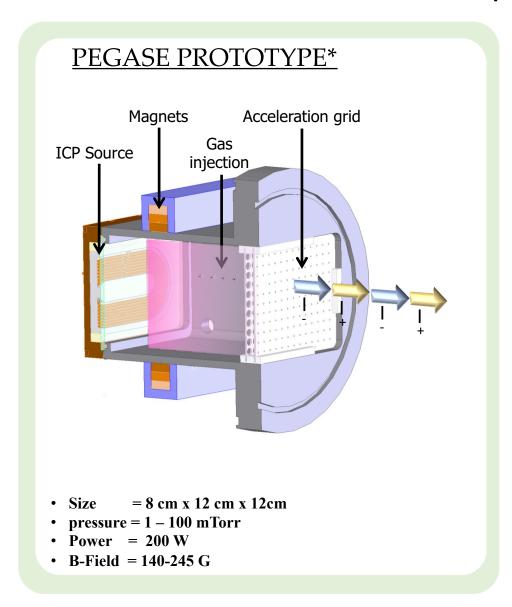
Part II: How to close a high-order moment set of equations

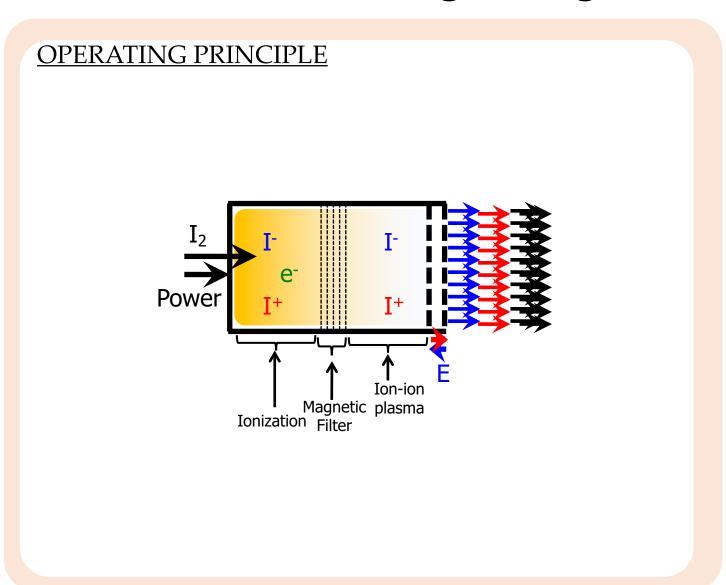


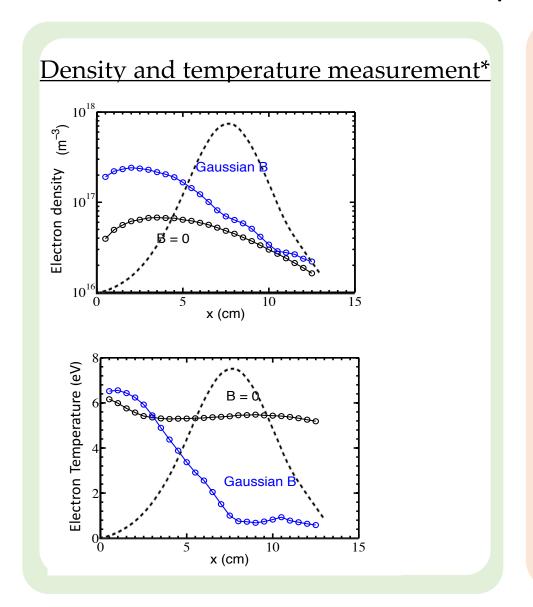


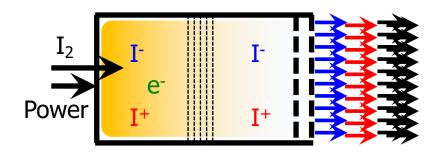
Part IV: Non-ambipolar models, future developments and conclusions





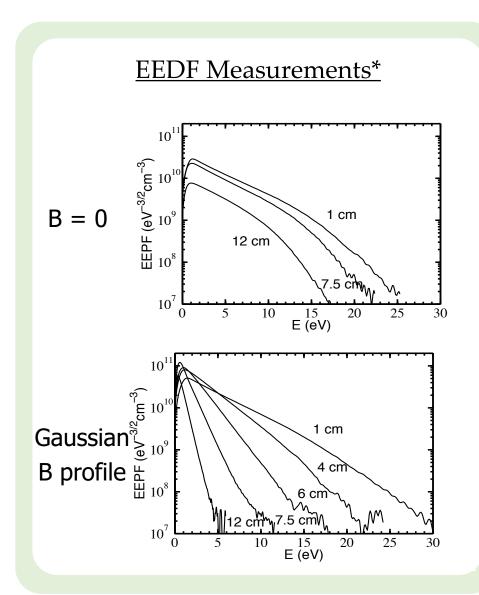


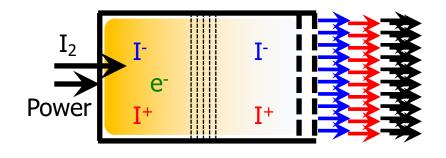




MODELING CHALLENGES

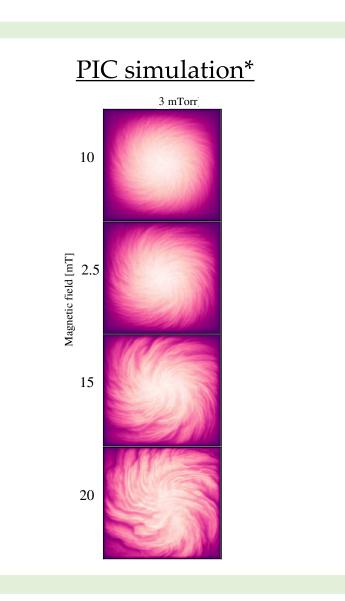
- **Non-local transport** (Due to geometry and magnetic field)
 - X Global models cannot describe the discharge

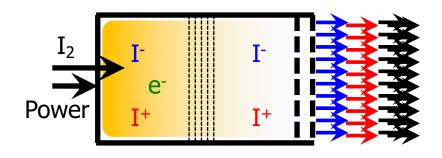




MODELING CHALLENGES

- Non-local transport (Due to geometry and magnetic field)
 - X Global models cannot describe the discharge
- Non-Maxwellian EEDF
 - X Domain is too big for PIC simulation



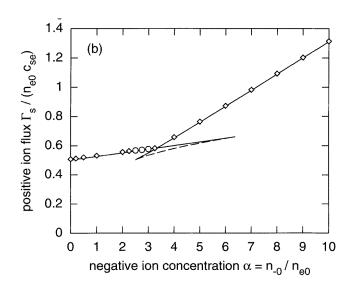


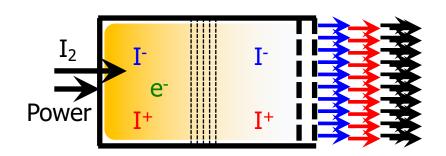
MODELING CHALLENGES

- Non-local transport (Due to geometry and magnetic field)
 - X Global models cannot describe the discharge
- Non-Maxwellian EEDF
 - X Domain is too big for PIC simulation
- Anomalous transport
 - Presence of magnetic field

*R. Lucken. (2019). PhD Thesis

Electronegative plasma transport theory*





MODELING CHALLENGES

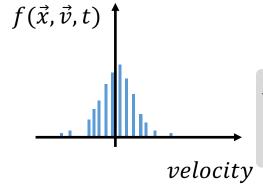
This talk

- Non-local transport (Due to geometry and magnetic field)
 - X Global models cannot describe the discharge
- Non-Maxwellian EEDF
 - X Domain is too big for PIC simulation
- Anomalous transport
 - Presence of magnetic field
- Negative Ions
 - Change transport, produce instabilities, and double layers

PART I:

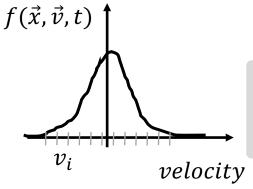
From the microscopic description to the macroscopic description

Modeling plasmas: from microscopic to macroscopic



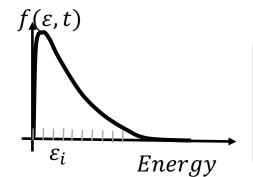
More info:

Birdsall, A.B. Langdon (1998) Benchmarks: Turner et al. (2012), Charoy et al. (2019)



More info:

K. Hara, PhD thesis (2015)V. Kolobov, R. Arslanbekov and D. Levko (2018)



More info:

Hagelaar & Pitchford (2005) A Tejero-del-Caz et al (2019) Kortshagen, Busch and Tsendin (1996) Igor D. Kaganovich and Oleg Polomarov (2003)

Microscopic description

Hamiltonian dynamics for N-particle system

Kinetic Equation

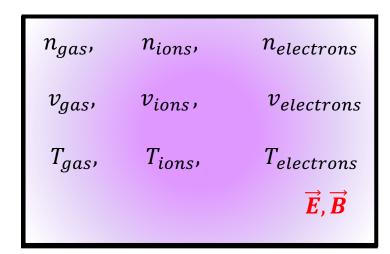
$$\frac{\partial f_{\alpha}}{\partial t} + \vec{v} \cdot \vec{\nabla} f_{\alpha} + \frac{\vec{F}_{\alpha}}{m_{\alpha}} \cdot \vec{\nabla}_{\vec{v}} f_{\alpha} = \left(\frac{\delta f}{\delta t}\right)_{\text{coll}}$$

Resolution methods:

- 1. PIC (stochastic resolution)
 - ✓ 2D "realistic" simulations
 - X Numerical noise and cost
- 2. Direct resolution of Boltzmann
 - ✓ No noise
 - More expensive and difficult
- 3. Local and non-local (two-term) Boltzmann solvers
 - ✓ No noise and efficient
 - X "Local" or 1D

Modeling plasmas: from microscopic to macroscopic

Plasma



Which model to use in weakly collisional conditions?

Microscopic description

Hamiltonian dynamics for N-particle system

Kinetic Equation

$$\frac{\partial f_{\alpha}}{\partial t} + \vec{v} \cdot \vec{\nabla} f_{\alpha} + \frac{\vec{F}_{\alpha}}{m_{\alpha}} \cdot \vec{\nabla}_{\vec{v}} f_{\alpha} = \left(\frac{\delta f}{\delta t}\right)_{\text{coll}}$$

Fluid Equations

We take moments (weighted average in the velocity space)

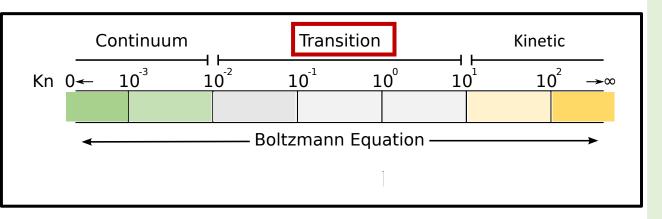
$$\frac{\partial \mathbf{M}_{\alpha}}{\partial t} + \vec{\nabla} \cdot \langle \vec{v} \mathbf{V}_{\alpha} f_{\alpha} \rangle = -\left\langle \mathbf{V}_{\alpha} \frac{\vec{F}_{\alpha}}{m_{\alpha}} \cdot \vec{\nabla}_{\vec{v}} f_{\alpha} \right\rangle + \left\langle \mathbf{V}_{\alpha} \left(\frac{\delta f_{\alpha}}{\delta t} \right)_{coll} \right\rangle$$

- ✓ 2D/3D with complex geometries
- X Closure and pure kinetic effects

Closure models:

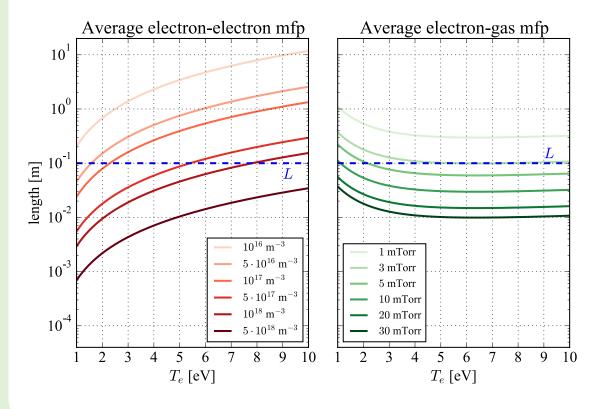
- Moments methods (Grad's, max-entropy)
- Chapman-Enskog expansion
- Hybrid models (kinetic-fluid)
- Euler (MHD) equations

Regime of validity of each model

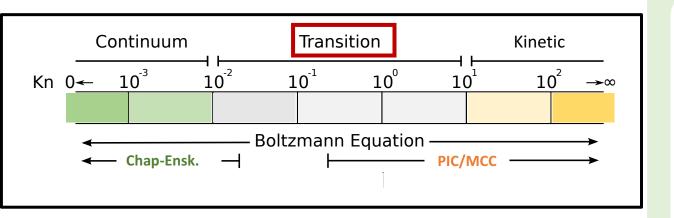


$$Kn = \frac{mean\ free\ path}{characteristic\ length}$$

Electron collisional mean free path in argon

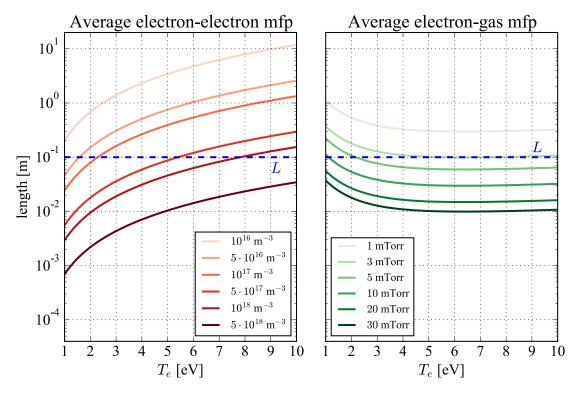


Regime of validity of each model

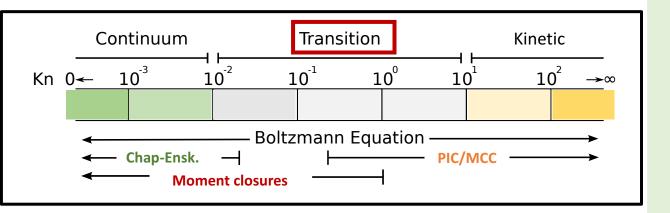


- Chapman Enskog: for moderate collisional plasmas.
 - <u>Ferziger & Kaper (1972)</u>
 - Multi-component (Boltzmann)
 - Braginskii (1965)
 - Magnetized and fully-ionized (Landau)
 - Zhdanov (2002)
 - Magnetized and partially ionized (Boltzmann)
 - Graille, Magin, Massot (2009)
 - Magnetized and partially-ionized (Boltzmann)

Electron collisional mean free path in argon

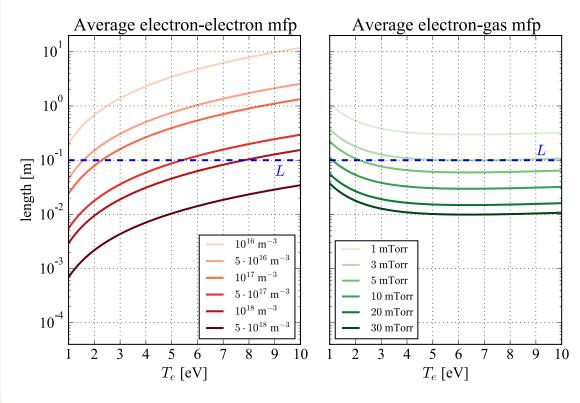


Regime of validity of each model



- Moment methods: for weakly collisional plasmas
 - Grad's method (1949)
 - Landau and Boltzmann operators.
 - Landau Fluids (1997)
 - Landau damping
 - <u>Levermore's Maximum Entropy</u> (1996)
 - Mostly BGK operator
 - Pearson IV, angular moments, other closures...

Electron collisional mean free path in argon



Moment (multi-fluid) hierarchies: closure problem

Microscopic description

Average in velocity space

Multi-fluid description

Boltzmann equation

$$\frac{\partial f_{\alpha}}{\partial t} + \vec{v} \cdot \vec{\nabla} f_{\alpha} + \frac{\vec{F}_{\alpha}}{m_{\alpha}} \cdot \vec{\nabla}_{\vec{v}} f_{\alpha} = \left(\frac{\delta f}{\delta t}\right)_{\text{coll}}$$

$$\alpha \in \{\text{electrons, ions, gas}\}$$

 $\mathbf{M}_{\alpha}(\vec{x},t) = \int_{\infty} \mathbf{V}_{\alpha} f_{\alpha} d^{3}v = \langle \mathbf{V}_{\alpha} f_{\alpha} \rangle$ $\mathbf{V}_{\alpha}(\vec{v}) = \left(m_{\alpha}, \ m_{\alpha} v_{i}, \ \frac{1}{2} m_{\alpha} v_{i} v_{j}, \ m_{\alpha} v_{i} v_{j} v_{k}, \ \cdots \right)^{T} \ \underline{\mathbf{Moment hierarchy}}$

$$\frac{\partial \mathbf{M}_{\alpha}}{\partial t} + \vec{\nabla} \cdot \langle \vec{v} \mathbf{V}_{\alpha} f_{\alpha} \rangle = -\left\langle \mathbf{V}_{\alpha} \frac{\vec{F}_{\alpha}}{m_{\alpha}} \cdot \vec{\nabla}_{\vec{v}} f_{\alpha} \right\rangle + \left\langle \mathbf{V}_{\alpha} \left(\frac{\delta f_{\alpha}}{\delta t} \right)_{coll} \right\rangle$$

Macroscopic variables

Mass
$$\rho$$
Momentum
$$\frac{\rho u_i}{\text{Energy}}$$
Heat flux
$$\frac{\frac{1}{2}\rho u_i u_j + \frac{1}{2}P_{ij}}{\rho u_i u_j u_k + P_{ij} u_k + P_{jk} u_i + P_{ik} u_j + Q_{ijk}}$$

$$\vdots$$

Fluxes

$$\begin{pmatrix}
\rho u_{i} \\
\rho u_{i} \\
\frac{1}{2}\rho u_{i}u_{j} + \frac{1}{2}P_{ij} \\
\rho u_{i}u_{j}u_{k} + P_{ij}u_{k} + P_{jk}u_{i} + P_{ik}u_{j} + Q_{ijk}
\end{pmatrix}
\begin{pmatrix}
\rho u_{i} \\
\rho u_{i}u_{j}u_{k} + 3P_{(ij}u_{k)} + Q_{ijk} \\
\rho u_{i}u_{j}u_{k}u_{l} + 6u_{(i}u_{j}P_{kl)} + 4u_{(i}Q_{jkl)} \\
\vdots
\end{pmatrix}
+ R_{ijkl}$$

Electromagnetic forces

$$\begin{pmatrix} 0 \\ q_{\alpha}nE_{i} \\ 2q_{\alpha}nu_{(j}E_{i)} \\ 3q_{\alpha}\left(nE_{(i}u_{j}u_{k)} + \frac{E_{(i}P_{jk)}}{m}\right) \\ \vdots \end{pmatrix}$$

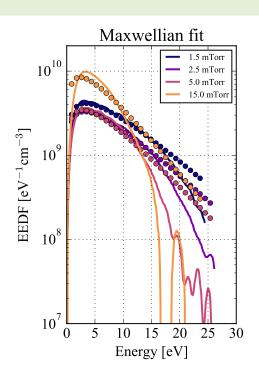
Closure problem:

- How many moments?
- The fluxes depend on next moment

Collisional integrals:

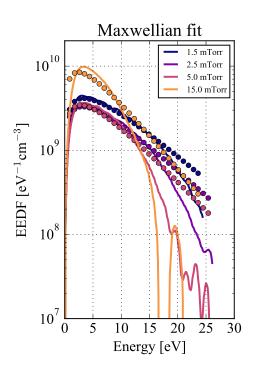
Collisional terms

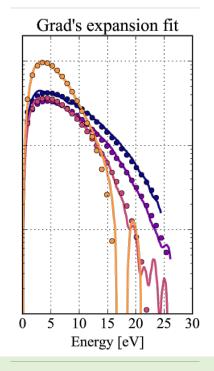
Depend on cross-section data and VDF



$$f_{\mathfrak{e}}^{(M)}(oldsymbol{c}_{\mathfrak{e}},oldsymbol{x},t)=n_{\mathfrak{e}}\left(rac{eta_{\mathfrak{e}}}{\pi}
ight)^{3/2}\exp\left(-eta_{\mathfrak{e}}c_{\mathfrak{e}}^{2}
ight)$$

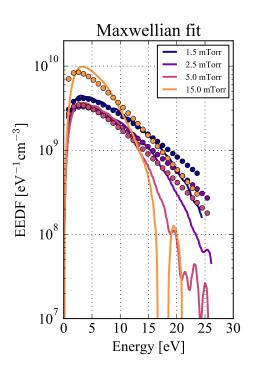
Not able to capture depletion at the tails

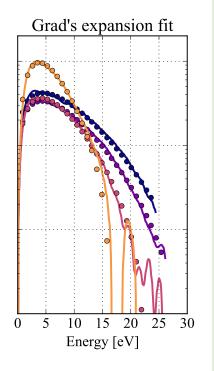


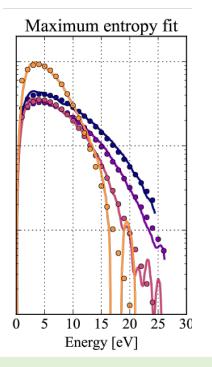


$$f_{\mathfrak{e}}^{(Grad)}(\boldsymbol{x},\boldsymbol{v},t) = f^{(M)} \left(1 + a + A_i c_{\mathfrak{e}_i} + B_{ij} c_{\mathfrak{e}_i} c_{\mathfrak{e}_j} + D_{ijk} c_{\mathfrak{e}_i} c_{\mathfrak{e}_j} c_{\mathfrak{e}_k} + \ldots \right)$$

- Is able to capture well the both low and high-energies.
- ✓ Advantages: Fast to compute the closure. Can be used with Boltzmann and Landau collisional operators.
- <u>Disadvantages</u>: Positivity of distribution function, problems at high Mach numbers (loss of hyperbolicity)

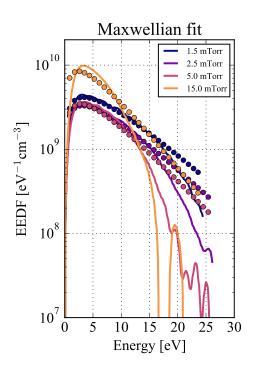


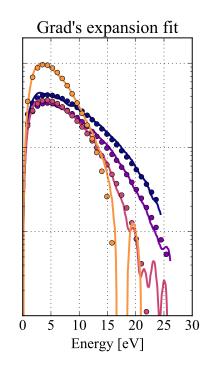


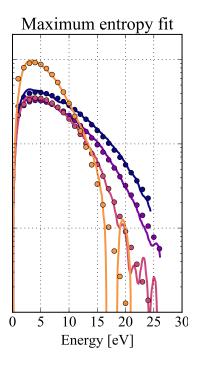


$$f_{\mathbf{e}}^{(MaxEnt)}(\boldsymbol{x},\boldsymbol{v},t) = f^{(M)} \exp\left(a + A_i c_{\mathbf{e}_i} + B_{ij} c_{\mathbf{e}_i} c_{\mathbf{e}_j} + D_{ijk} c_{\mathbf{e}_i} c_{\mathbf{e}_j} c_{\mathbf{e}_k} + \ldots\right)$$

- Is able to capture well the both low and high-energies.
- Advantages: Positivity. Druyvesteyn is a particular case.
 Good at supersonic speeds (to represent shocks).
- <u>Disadvantages</u>: <u>Difficult and slow</u> to compute closure.
 Collisional terms mostly based on <u>BGK</u> operator.







- Moment distribution seem to be able to capture depletion at high energies:
 - Need to go for higher moments (> heat flux).
 - What is the simplest model capturing the excess kurtosis?
 - How do we obtain the closure of fluxes and collisional terms?

PART II:

Grad's closure with heat-flux and EEDF perturbations

Grad's method: Derivation of the equations

Step 1: Choose number of moments and assume a distribution function shape

Moment weights:

Fluid variables

$$n_{\mathfrak{e}} = \int_{\infty} f_{\mathfrak{e}} doldsymbol{v}, \quad
ho_{\mathfrak{e}} u_{\mathfrak{e}_i} = \int_{\infty} m_{\mathfrak{e}} v_i f_{\mathfrak{e}} doldsymbol{v}, \quad p_{\mathfrak{e}} = rac{1}{3} \int_{\infty} m_{\mathfrak{e}} c_{\mathfrak{e}}^2 f_{\mathfrak{e}} doldsymbol{v},
onumber
on$$

Deviation of fourth mom from Maxwellian (excess kurtosis)

$$\Delta_{\mathfrak{e}} = \frac{p_{\mathfrak{e}_{iijj}} - p_{\mathfrak{e}_{iijj}}^{(M)}}{p_{\mathfrak{e}_{iiij}}^{(M)}} = \frac{2}{15} \frac{\rho_{\mathfrak{e}}}{p_{\mathfrak{e}}^2} \int_{\infty} m_{\mathfrak{e}} c_{\mathfrak{e}}^4 \left(f_{\mathfrak{e}} - f_{\mathfrak{e}}^{(M)} \right) d\boldsymbol{v}$$

Distribution function: $f^{(9M)}(c_i) = n_{\alpha} \left(\frac{m_{\alpha}}{2\pi e T_{\alpha}}\right)^{3/2} \exp\left(-\frac{m_{\alpha}C^2}{2e T_{\alpha}}\right) \left(1 + a + A_i c_{\epsilon_i} + B c_{\epsilon}^2 + D_i c_{\epsilon}^2 c_{\epsilon_i} + E c_{\epsilon}^4\right)$ (Grad's (1949)) Maxwellian

Coefficients? a, A_i, B, D_i, E

Grad's method: Derivation of the equations

Step 1: Choose number of moments and assume a distribution function shape

Step2: Compute distribution function coefficients with the definition of the moments

$$f^{(9M)}(c_i) = f_{\mathfrak{e}}^{(M)}(c_i) \left(1 + a + A_i c_{\mathfrak{e}_i} + B c_{\mathfrak{e}}^2 + D_i c_{\mathfrak{e}}^2 c_{\mathfrak{e}_i} + E c_{\mathfrak{e}}^4 \right)$$

Flux definition:
$$0 = \frac{1}{2} \int_{\infty} dv^3 C_i f_{\alpha}^{(8M)} = A_i \langle C_i C_i f_{\alpha}^{(0)} \rangle + D_i \langle C_i C_j C^2 f_{\alpha}^{(0)} \rangle = A_i + D_i \frac{5p_{\alpha}}{\rho_{\alpha}}$$
Heat Flux definition:
$$q_{i\alpha} = \frac{1}{2} \int_{\infty} dv^3 C_i C^2 f_{\alpha}^{(8M)} = A_i \frac{5}{2} \frac{p^2}{\rho} + D_i \frac{35}{2} \frac{p_{\alpha}^3}{\rho_{\alpha}^2}$$

 $q_{i\alpha} = \frac{1}{2} \int_{\mathbb{R}^3} dv^3 C_i C^2 f_{\alpha}^{(8M)} = A_i \frac{5}{2} \frac{p^2}{\rho} + D_i \frac{35}{2} \frac{p_{\alpha}^3}{\rho_i^2}$

Mass, energy and fourth moment:

$$a = \frac{15}{8}\Delta_e \qquad B = -\frac{5m_e}{4eT_e}\Delta_e$$

$$E = -\frac{m_e^2}{8e^2T_e^2}\Delta_e$$

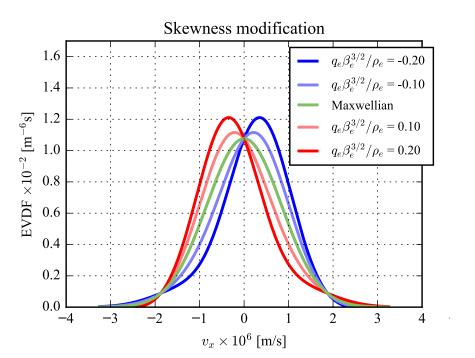
$$\begin{array}{ll} \text{Obtained} \\ \text{distribution:} \end{array} \quad f_{\mathfrak{e}}(\boldsymbol{x},\boldsymbol{c}_{\mathfrak{e}},t) = f_{\mathfrak{e}}^{(M)} \left\{ 1 + \frac{8\beta_{\mathfrak{e}}^2}{5\rho_{\mathfrak{e}}} q_{\mathfrak{e}_i} c_{\mathfrak{e}_i} \left(\beta_{\mathfrak{e}} c_{\mathfrak{e}}^2 - \frac{5}{2} \right) + \left(\frac{15}{8} - \frac{5\beta_{\mathfrak{e}}}{2} c_{\mathfrak{e}}^2 + \frac{\beta_{\mathfrak{e}}^2}{2} c_{\mathfrak{e}}^4 \right) \Delta_{\mathfrak{e}} \right\} \\ \end{array}$$

Perturbation depends on fluid quantities13

 $A_{i} = -\frac{\rho_{e}}{p_{e}^{2}} q_{e_{i}}$ $D_{i} = \frac{1}{5} \frac{\rho_{e}^{2}}{n^{3}} q_{e_{i}}$

Analysis of non-equilibrium distribution function

Grad's expansion: Maxwellian distribution
$$f_e^{(0)}$$
 + perturbation
$$f_e(\vec{x}, \vec{v}, t) = f_e^{(0)} \left\{ (1 + \frac{15}{8}\Delta) - \frac{4\beta^2}{\rho} q_i C_i + \frac{8\beta^2}{5\rho} q_i \beta C^2 C_i \right\}$$



Analysis of non-equilibrium distribution function

Grad's expansion: Maxwellian distribution $f_e^{(0)}$ + perturbation

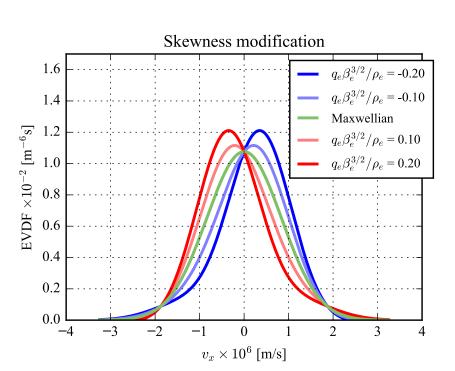
$$f_e(\vec{x}, \vec{v}, t) = f_e^{(0)} \left\{ (1 + \frac{15}{8}\Delta) - \frac{4\beta^2}{\rho} q_i C_i - \frac{5\beta}{2} \Delta C^2 + \frac{8\beta^2}{5\rho} q_i \beta C^2 C_i + \frac{\beta^2}{2} \Delta C^4 \right\}$$

The VDF depends on 5 fluid quantities

Velocity $ec{u}_e$ Heat Flux $ec{q}_e$

4th-moment

$$\Delta = \frac{1}{15\rho_e} \left(\frac{m_e}{eT_e}\right)^2 \int_{\infty} m_e C^4 \left(f_e - f_e^{(0)}\right) d^3 C$$



Analysis of non-equilibrium distribution function

Grad's expansion: Maxwellian distribution $f_e^{(0)}$ + perturbation

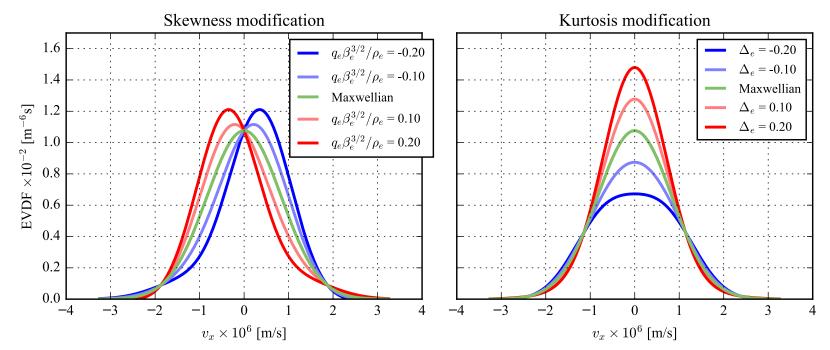
$$f_e(\vec{x}, \vec{v}, t) = f_e^{(0)} \left\{ (1 + \frac{15}{8}\Delta) - \frac{4\beta^2}{\rho} q_i C_i - \frac{5\beta}{2} \Delta C^2 + \frac{8\beta^2}{5\rho} q_i \beta C^2 C_i + \frac{\beta^2}{2} \Delta C^4 \right\}$$

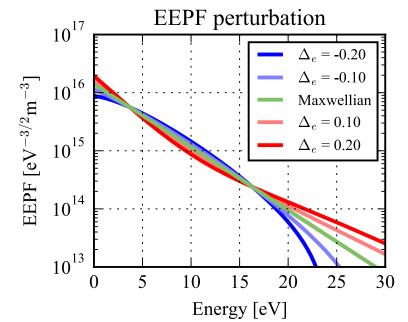
The VDF depends on 5 fluid quantities

Velocity \vec{u}_e **Heat Flux** \vec{q}_e

4th-moment

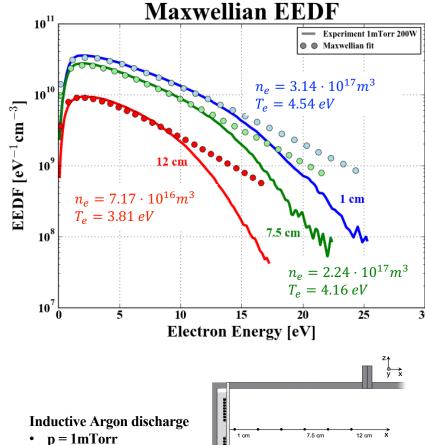
$$\Delta = \frac{1}{15\rho_e} \left(\frac{m_e}{eT_e}\right)^2 \int_{\infty} m_e C^4 \left(f_e - f_e^{(0)}\right) d^3 C$$

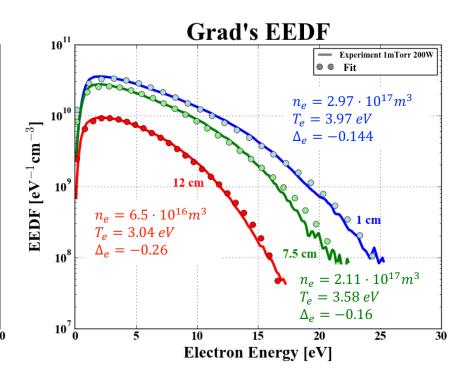




Comparison with experiments: Different positions

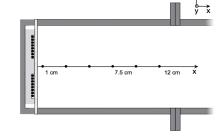
We compare the Grad's EEDF to the experiments:





- Maxwellian EEDF overestimates the temperature and the density
- The EEDF with the 4th moment is able to fit the experimental measurements
- The deviation from Maxwellian of the fourth moment is small, i.e., $|\Delta_{\rm e}| < 1$

- P = 200 W



Grad's method: Derivation of the equations

Step 1: Choose number of moments and assume a distribution function shape

Step2: Compute distribution function coefficients with the definition of the moments.

Step 3: With the computed distribution function, we obtain the closure flux

The flux of the heat flux is:
$$r_{\mathfrak{e}_{ij}} = \frac{1}{2} \int_{\infty} m_{\mathfrak{e}} c_{\mathfrak{e}}^2 c_{\mathfrak{e}_i} c_{\mathfrak{e}_j} f_{\mathfrak{e}} d\boldsymbol{v} = \frac{5}{2} \frac{p_{\mathfrak{e}}^2}{\rho_{\mathfrak{e}}} \left(1 + \Delta_{\mathfrak{e}}\right) \delta_{ij}$$
 The flux of the Fourth moment:
$$r_{\mathfrak{e}_{iijjk}} = \frac{1}{2} \int_{\infty} m_{\mathfrak{e}} c_{\mathfrak{e}}^4 c_{\mathfrak{e}_k} f_{\mathfrak{e}} d\boldsymbol{v}. = 14 \frac{p_{\mathfrak{e}}}{\rho_{\mathfrak{e}}} q_{\mathfrak{e}_k}$$

Grad's method: Derivation of the equations

Step 1: Choose number of moments and assume a distribution function shape

Step2: Compute distribution function coefficients with the definition of the moments.

Step 3: With the computed distribution function, we obtain the closure flux

Step 4: Compute collisional integrals (Moments of the Boltzmann collisional operator)

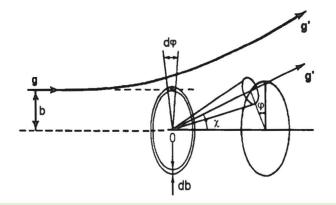
Boltzmann operator

$$\left. \frac{\delta f_e}{\delta t} \right|_{coll} = \int_{\infty} \int (f'_e f'_g - f_e f_g) g \sigma_{eg}(g, \chi) d\Omega d^3 \vec{v}_g$$

Weak version of Boltzmann operator

$$\left\langle \psi(\vec{v}_e) \frac{\delta f_e}{\delta t} \bigg|_{coll} \right\rangle = \int_{\infty} \int_{\infty} \int \left(\psi(\vec{v}_e') - \psi(\vec{v}_e) \right) f_e f_g g \sigma_{eg}(g, \chi) d\Omega d^3 \vec{v}_g d^3 \vec{v}_e$$

$$\vec{g} = \vec{v}_e - \vec{v}_g \quad \text{and} \quad d\Omega = \sin \chi d\varphi d\chi$$



Mechanics of the collision

Conservation properties in a scattering collision:

$$m_e \vec{v}_e + m_g \vec{v}_g = m_e \vec{v}_e' + m_g \vec{v}_g'$$

$$\frac{1}{2} m_e v_e^2 + \frac{1}{2} m_g v_g^2 = \frac{1}{2} m_e v_e'^2 + \frac{1}{2} m_g v_g'^2$$

<u>Definitions in center-of-mass (Jacobi variables)</u>

Pre- and after-collision relations

$$\vec{v}_e = \vec{G} + \frac{\mu_{eg}}{m_e} \vec{g}$$
 and $\vec{v}_g = \vec{G} - \frac{\mu_{eg}}{m_g} \vec{g}$

$$\vec{v}'_e = \vec{G} + \frac{\mu_{eg}}{m_e} \vec{g}'$$
 and $\vec{v}'_g = \vec{G} - \frac{\mu_{eg}}{m_g} \vec{g}'$

In the reference frame of the vector \vec{g}

$$\vec{g}' = g \left(\cos \chi \vec{i} + \sin \chi \cos \varphi \vec{j} + \sin \chi \sin \varphi \vec{k} \right)$$

We can see that we can write:

$$\vec{v}_e(\vec{G}, \vec{g}, \chi, \varphi), \ \vec{v}_g(\vec{G}, \vec{g}, \chi, \varphi), \ \vec{v}_e'(\vec{G}, \vec{g}, \chi, \varphi), \ \vec{v}_g'(\vec{G}, \vec{g}, \chi, \varphi)$$

We write the integrals as function of Jacobi variables and averaged cross sections $(\vec{G}, \vec{g}, \chi, \varphi)$

Momentum exchange:

$$\vec{R}_{eg} = \left\langle m_e \vec{v}_e \frac{\delta f_e}{\delta t} \bigg|_{coll} \right\rangle = -\mu_{eg} \int_{\infty} d^3 \vec{g} \int_{\infty} d^3 \vec{G} \vec{g} Q^{(1)} f_e f_g g$$

Energy exchange:

$$Q_{eg} = \left\langle \frac{m_e}{2} v_e^2 \frac{\delta f_e}{\delta t} \bigg|_{coll} \right\rangle = -\mu_{eg} \int_{\infty} d^3 \vec{g} \int_{\infty} d^3 \vec{G} (\vec{G} \cdot \vec{g}) Q^{(1)} f_e f_g g$$

Heat-Flux exchange:

$$\vec{R}_{eg}^{hF} = \left\langle \left. \frac{m_e}{2} v_e^2 \vec{v}_e \frac{\delta f_e}{\delta t} \right|_{coll} \right\rangle = -\frac{\mu_{eg}}{2} \int_{\infty} d^3 \vec{g} \int_{\infty}$$

Fourth-moment exchange:

$$Q_{eg}^{(4)} = \left\langle \frac{m_e}{2} v_e^4 \frac{\delta f_e}{\delta t} \Big|_{coll} \right\rangle = -2\mu_{eg} \int_{\infty} d^3 \vec{g} \int_{\infty} d^3 \vec{G} \left\{ \left[G^2 + \left(\frac{\mu_{eg}}{m_e} \right)^2 g^2 \right] \left(\vec{G} \cdot \vec{g} \right) Q^{(1)} + \left(\frac{\mu_{eg}}{m_e} \right) \left[\frac{3}{2} \left(\vec{G} \cdot \vec{g} \right)^2 - \frac{1}{2} g^2 G^2 \right] Q^{(2)} \right\} f_e f_g g$$

Momentum and viscosity cross-section

$$Q^{(1)}(g) = 2\pi \int_0^{\pi} (1 - \cos \chi) \sigma_{eg}(g, \chi) \sin \chi d\chi$$
$$Q^{(2)}(g) = 2\pi \int_0^{\pi} (1 - \cos^2 \chi) \sigma_{eg}(g, \chi) \sin \chi d\chi$$

Boltzmann operator
$$\left. \frac{\delta f_{\mathfrak{e}}}{\delta t} \right|_{\mathfrak{e}_{\mathfrak{g}}} = \int \int \left(f'_{\mathfrak{e}} f'_{\mathfrak{g}} - f_{\mathfrak{e}} f_{\mathfrak{g}} \right) g \sigma d\Omega d\boldsymbol{v}_{\mathfrak{g}}$$

Momentum exchange:

$$\boldsymbol{R}_{\mathfrak{eg}}^{(el)} = -m_{\mathfrak{e}} n_{\mathfrak{e}} \nu_{\mathfrak{eg}}^{(fr,1)} \boldsymbol{u}_{\mathfrak{e}} - n_{e} \nu_{\mathfrak{eg}}^{(skew,1)} \frac{\boldsymbol{q}_{\mathfrak{e}}}{p_{\mathfrak{e}}}$$
Frictional force Soret effect

Energy exchange:

$$Q_{\mathfrak{eg}}^{(el)} = \underbrace{\frac{m_{\mathfrak{e}}}{m_{\mathfrak{g}}} n_{e} \nu_{\mathfrak{eg}}^{(fr,2)} e\left(T_{\mathfrak{g}} - T_{\mathfrak{e}}\right) + \underbrace{\frac{m_{\mathfrak{e}}}{m_{\mathfrak{g}}} n_{\mathfrak{e}} \nu_{\mathfrak{eg}}^{(kurt,2)} \Delta_{\mathfrak{e}} e T_{\mathfrak{g}} - n_{\mathfrak{e}} \nu_{\mathfrak{eg}}^{(skew,2)} \frac{\boldsymbol{q}_{\mathfrak{e}}}{p_{\mathfrak{e}}} \cdot \boldsymbol{u}_{\mathfrak{e}}}_{\text{Temp. relaxation}}$$
Temp. relaxation
Kurtosis correction
Effect of skewness

Heat-Flux exchange:

$$R_{\mathfrak{eg}}^{hF,(el)} = -n_{\mathfrak{eg}} \nu_{\mathfrak{eg}}^{(fr,3)} e T_{\mathfrak{e}} u_{\mathfrak{e}} - \nu_{\mathfrak{eg}}^{(skew,3)} q_{\mathfrak{e}}$$

Dufour effect Skewness relaxation

Fourth-moment exchange:

$$Q_{\mathfrak{eg}}^{(el,4)} = n_{\mathfrak{g}} \frac{m_{\mathfrak{e}}}{m_{\mathfrak{g}}} \nu_{\mathfrak{eg}}^{(fr,4)} \frac{p_{\mathfrak{e}}^{2}}{\rho_{\mathfrak{e}}} \left(\frac{T_{\mathfrak{g}}}{T_{\mathfrak{e}}} - 1\right) + n_{\mathfrak{g}} \frac{m_{\mathfrak{e}}}{m_{\mathfrak{g}}} \nu_{\mathfrak{eg}}^{(kurt,4)} \frac{p_{\mathfrak{e}}^{2}}{\rho_{\mathfrak{e}}} \frac{T_{\mathfrak{g}}}{T_{\mathfrak{e}}} + 4\nu_{\mathfrak{eg}}^{(skew,3)} \boldsymbol{q}_{\mathfrak{e}} \cdot \boldsymbol{u}_{\mathfrak{e}}$$
Kurtosis relaxation
Additional correction
Effect of skewness

BGK operator $\frac{\delta f_{\mathfrak{e}}}{\delta t}\Big|_{\mathfrak{e}_{\mathfrak{a}}} = -\nu_m f_{\mathfrak{e}}$

Momentum exchange:

$$oldsymbol{R}_{\mathfrak{e}\mathfrak{g}}^{(el)} = -m_{\mathfrak{e}}n_{\mathfrak{e}}
u_{\mathfrak{e}}$$

Energy exchange:

$$Q_{\mathfrak{eg}}^{(el)} = -3\frac{m_{\mathfrak{e}}}{m_{\mathfrak{g}}}n_{\mathfrak{e}}\nu_{m}eT_{\mathfrak{e}}$$

Heat-Flux exchange:

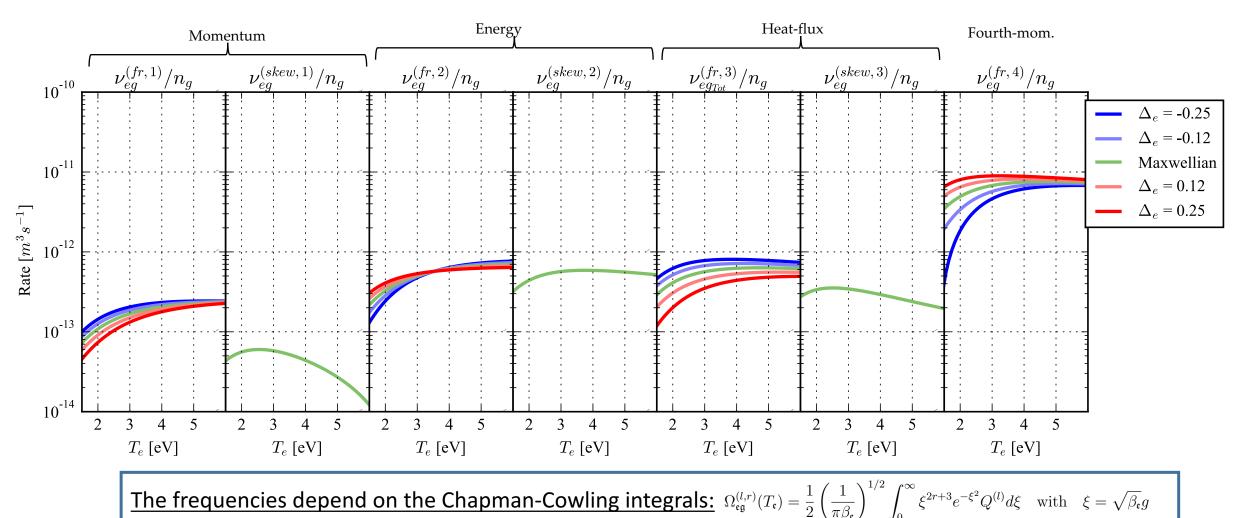
$$oldsymbol{R}_{{\mathfrak e}{\mathfrak g}}^{hF,(el)} = -
u_m oldsymbol{q}_{{\mathfrak e}}$$

Fourth-moment exchange:

$$Q_{\mathfrak{eg}}^{(el,4)} = -\frac{m_{\mathfrak{e}}}{m_{\mathfrak{g}}} \nu_m \frac{p_{\mathfrak{e}}^2}{\rho_{\mathfrak{e}}} \Delta_{\mathfrak{e}}.$$

We write the integrals as function of Jacobi variables and averaged cross sections

The friction terms depend on the kurtosis perturbation:



Derivation of collisional source terms:

Electron-electron & Ionization

Mass exchange:

$$\dot{n}_{\mathfrak{e}}^{(iz)} = n_{\mathfrak{e}} n_{\mathfrak{g}} K_{iz}^{(0)}.$$

Momentum exchange:

Conserved in electron-electron and neglected in inelastic

Energy exchange:

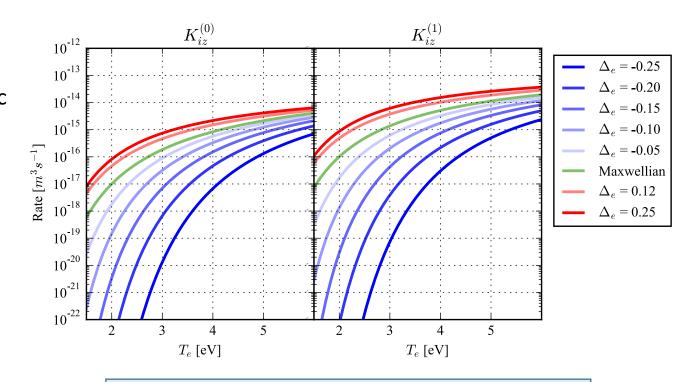
$$Q_{\mathfrak{eg}}^{(inel)} = -\sum_{k=0}^{excit,iz} n_{\mathfrak{e}} n_{\mathfrak{g}} K_{inel,k}^{(0)} n_{\mathfrak{g}} \phi_k^*$$

Heat-Flux exchange:

$$oldsymbol{R}_{\mathfrak{e}\mathfrak{e}}^{hF} = -n_{\mathfrak{e}}
u_{\mathfrak{e}\mathfrak{e}}^{(skew)}oldsymbol{q}_{\mathfrak{e}}.$$

Fourth-moment exchange:

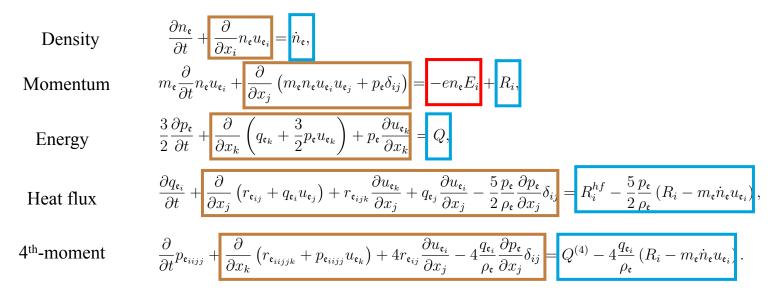
$$Q_{\mathfrak{e}\mathfrak{e}}^{(4)} = -n_{\mathfrak{e}}\nu_{\mathfrak{e}\mathfrak{e}}^{(kurt)}\frac{p_{\mathfrak{e}}^2}{\rho_{\mathfrak{e}}}\Delta_{\mathfrak{e}} \qquad Q_{\mathfrak{e}\mathfrak{g}}^{(inel,4)} = -2\sum_{k=0}^{excit,iz} \left(\frac{p_{\mathfrak{e}}^2}{\rho_{\mathfrak{e}}}\right)K_{inel,k}^{(1)}\left(\frac{\phi_k^*}{T_e}\right)$$



Ionization and inelastic rate largely depend on the kurtosis!

Set of equations with the fourth moment (1D)

Electrons (9 eqs in 3D):



Unsteady terms
Flux terms
Electric forces
Collisional terms

Main influence of the fourth moment in the equations:

- 1. All the collisional rates are modified, e.g., the ionization rate.
- 2. The heat conduction and diffusion will be modified
- 3. Non-linear effects due to equations coupling and collisional source terms

Intermediate ideas to take with you

- 1. In ICP discharges we measure kurtosis perturbations in the EEDF, this can be obtained by the resolution of the contracted fourth moment.
- 2. By taking **higher moments, the distribution function is more perturbed** (less Maxwellian), but the mathematical complexity increases.
- 3. Most of multi-fluid models assume BGK-like operators (all the moments have the same collision frequency).
- 4. Deviations from the Maxwellian can lead to "unexpected terms" in the equations. These terms are usually disregarded in simple fluid models.

Literature

Classical books: Grad's (1949), Chapman & Cowling (1970), Balescu (1988)

Modern books: Gombosi (2003), Struchtrup (2005), Kremer (2010)

Plasma physics: Braginskii (1965), Zhdanov (2002)

Rigourous Chapman-Enskog: Ern & Giovangigli (1994), Magin et al. (2009)

Collisionless Landau Fluids: Hunana (2019)

Courses: Clinton Groth (UTIAS)

PART III:

Numerical resolution of the moment equations

Case 1: 0D relaxation in Argon plasma (comparison to kinetic solver)

We study a 0D plasma where the electrons are initially at 5 eV and Maxwellian distribution

- The elastic and inelastic collisions will cool down the electrons as well as change their EEDF.
- We consider the elastic and inelastic processes.
- We compare two models to PIC:
 - Maxwellian distribution

$$\frac{dn_e}{dt} = \text{Ioniz.}$$

$$dT_a$$

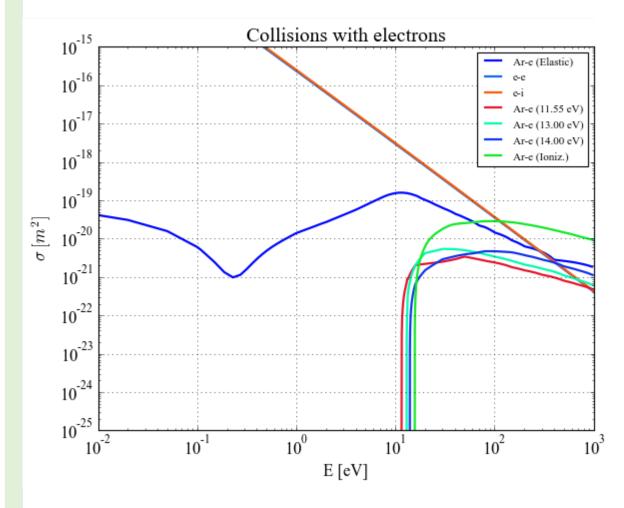
$$\frac{dT_e}{dt}$$
 = Inel. losses + El. losses

• High-order moment

$$\frac{dn_e}{dt} = \text{Ioniz.}$$

$$\frac{dT_e}{dt} = -(\text{Inel. losses} + \text{El. Losses})$$

$$\frac{d\Delta_e}{dt} = -(\text{Inel. losses} + \text{El. Losses}) + (e - e \text{ colls.})$$



We study a 0D plasma where the electrons are initially at 5 eV and Maxwellian distribution

- The elastic and inelastic collisions will cool down the electrons as well as change their EEDF.
- We consider the elastic and inelastic processes.
- We compare two models to PIC:
 - Maxwellian distribution

$$\frac{dn_e}{dt} = \text{Ioniz.}$$

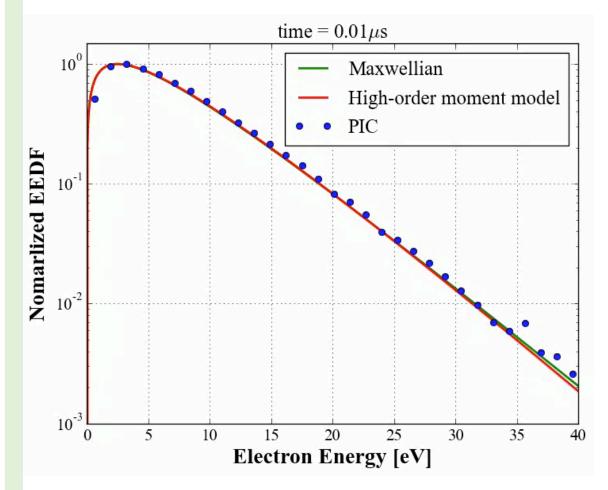
$$\frac{dT_e}{dt} = \text{Inel. losses} + \text{El. losses}$$

• High-order moment

$$\frac{dn_e}{dt} = \text{Ioniz.}$$

$$\frac{dT_e}{dt} = -(\text{Inel. losses} + \text{El. Losses})$$

$$\frac{d\Delta_e}{dt} = -(\text{Inel. losses} + \text{El. Losses}) + (e - e \text{ colls.})$$

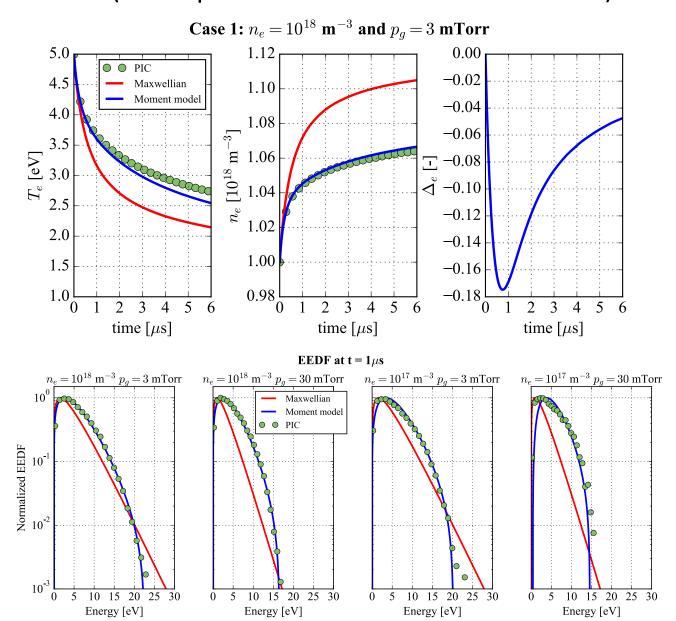


- The resolution of the higher moment seems to capture better the relaxation as compare to a model solving for a Maxwellian distribution.
 - The collisional coefficients depend on the shape of the EEDF (Δ_e)

We tried different conditions:

•
$$n_e = 10^{17}, 10^{18} \, m^{-3}$$

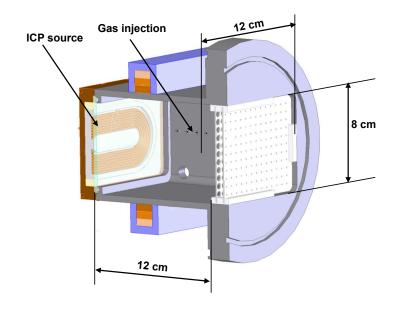
- $p_g = 3$, $30 \, mTorr$
- The moment model captures the deviation of the EEDF from Maxwellian.

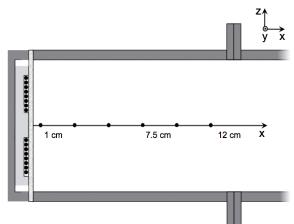


Case 2: 1D simulation of an ICP reactor

We study a 1D slab along the axis of the ICP reactor working on argon.

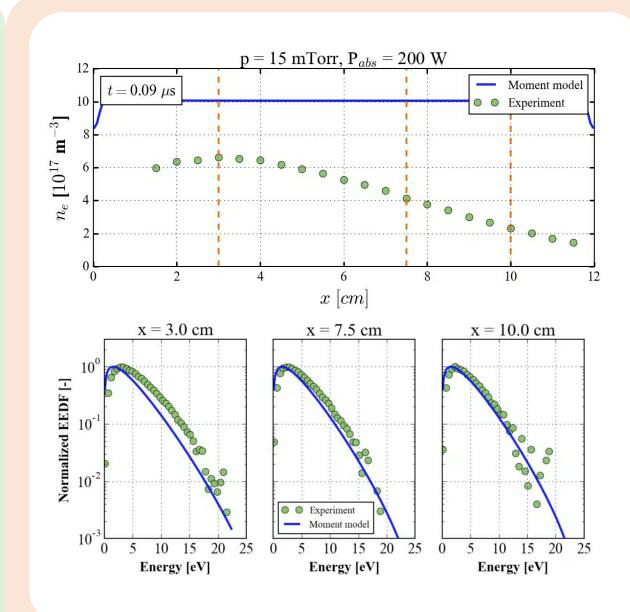
- Plasma is quasi-neutral.
- The plasma is assumed to be ambipolar in the x-direction
- The gas is assumed to be at constant temperature.
- We assume a 2D edge-to-center plasma density ration as proposed by Lucken et al. (2018).
- We solve for the following variables:
 - Plasma density
 - Velocity in the x-direction
 - Electron temperature
 - Electron heat-flux in the x-direction
 - Fourth moment (electron kurtosis)





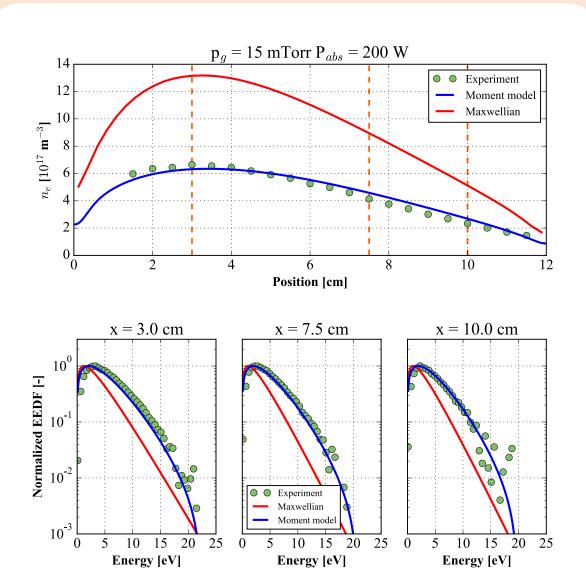
We study a 1D slab along the axis of the ICP reactor working on argon.

- Plasma is quasi-neutral.
- The plasma is assumed to be ambipolar in the x-direction
- The gas is assumed to be at constant temperature.
- We assume a 2D edge-to-center plasma density ration as proposed by Lucken et al. (2018).
- We solve for the following variables:
 - Plasma density
 - Velocity in the x-direction
 - Electron temperature
 - Electron heat-flux in the x-direction
 - Fourth moment (electron kurtosis)



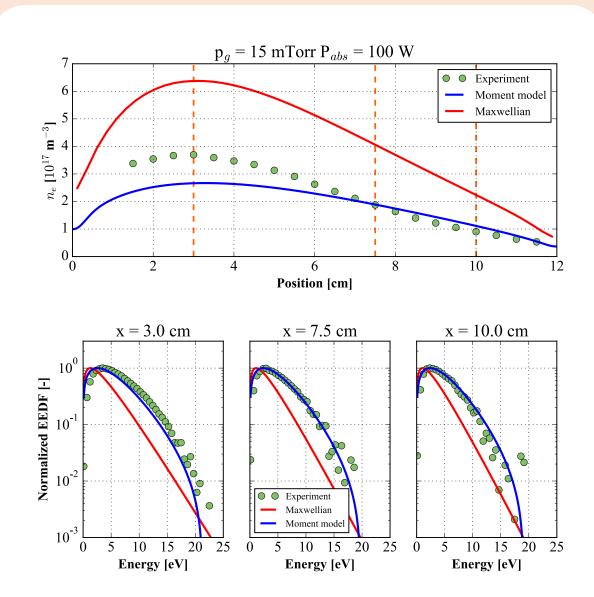
We study a 1D slab along the axis of the ICP reactor working on argon.

- Plasma is quasi-neutral.
- The plasma is assumed to be ambipolar in the x-direction
- The gas is assumed to be at constant temperature.
- We assume a 2D edge-to-center plasma density ration as proposed by Lucken et al. (2018).
- We solve for the following variables:
 - Plasma density
 - Velocity in the x-direction
 - Electron temperature
 - Electron heat-flux in the x-direction
 - Fourth moment (electron kurtosis)



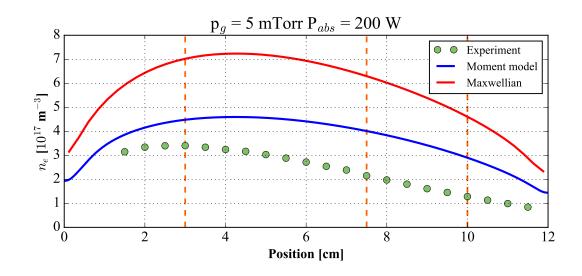
We study a 1D slab along the axis of the ICP reactor working on argon.

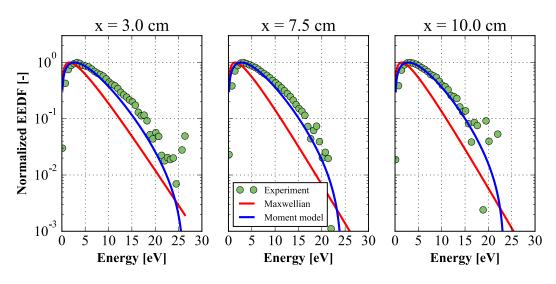
- Plasma is quasi-neutral.
- The plasma is assumed to be ambipolar in the x-direction
- The gas is assumed to be at constant temperature.
- We assume a 2D edge-to-center plasma density ration as proposed by Lucken et al. (2018).
- We solve for the following variables:
 - Plasma density
 - Velocity in the x-direction
 - Electron temperature
 - Electron heat-flux in the x-direction
 - Fourth moment (electron kurtosis)



We study a 1D slab along the axis of the ICP reactor working on argon.

- Plasma is quasi-neutral.
- The plasma is assumed to be ambipolar in the x-direction
- The gas is assumed to be at constant temperature.
- We assume a 2D edge-to-center plasma density ration as proposed by Lucken et al. (2018).
- We solve for the following variables:
 - Plasma density
 - Velocity in the x-direction
 - Electron temperature
 - Electron heat-flux in the x-direction
 - Fourth moment (electron kurtosis)





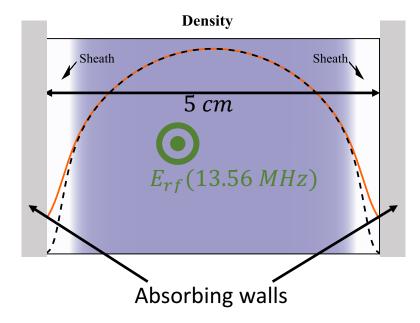
Intermediate ideas to take with you

- 1. The model seems to capture the EEDF as measured in experiments and simulated by kinetic solvers
- 2. The model is very efficient as the transport coefficients are parametrized with the local excess kurtosis.
- 3. The 1D reduction seems to provide interesting results, particularly in the comparison of the EEDF. However, the reduction of the dimensionality adds additional simplifications.

PART IV:

Non-ambipolar models and future perspectives

Non quasi-neutral model: ICP Discharge at low-pressure



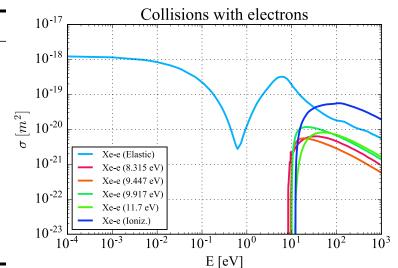
We study a 1D ICP Xenon discharge:

- $p_{gas}\sim 3 mTorr$
- $n_e^{\sim} 10^{15} m^3$
- 4 excitation collisions + single ionization + elastic + backscattering

We consider a model solving for:

- 5 moments for electrons
- 3 moments for ions
- Poisson equation

Reaction	Process	Thresh. [eV]
Electron impact Xe		
$e + Xe \rightarrow e + Xe$	Elastic	0
$e + Xe \rightarrow e + Xe^* (8.315 eV)$	Excitation	$8.315~\mathrm{eV}$
$e + Xe \rightarrow e + Xe^* (9.447 eV)$	Excitation	$9.477~\mathrm{eV}$
$e + Xe \rightarrow e + Xe^* (9.917 eV)$	Excitation	$9.917~\mathrm{eV}$
$e + Xe \rightarrow e + Xe^* (11.7 eV)$	Excitation	$11.7~\mathrm{eV}$
$e + Xe \rightarrow Xe^+ + 2e$	Elec. impact ioniz.	12.13 eV
Scattering of ions		
$Xe^+ + Xe \rightarrow Xe^+ + Xe$	Elastic	0
$Xe^+ + Xe \rightarrow Xe + Xe^+$	Charge exch.	0



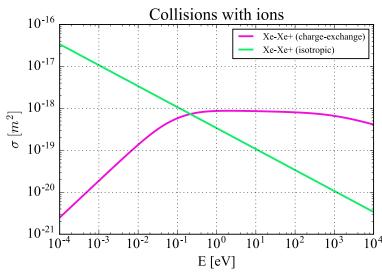
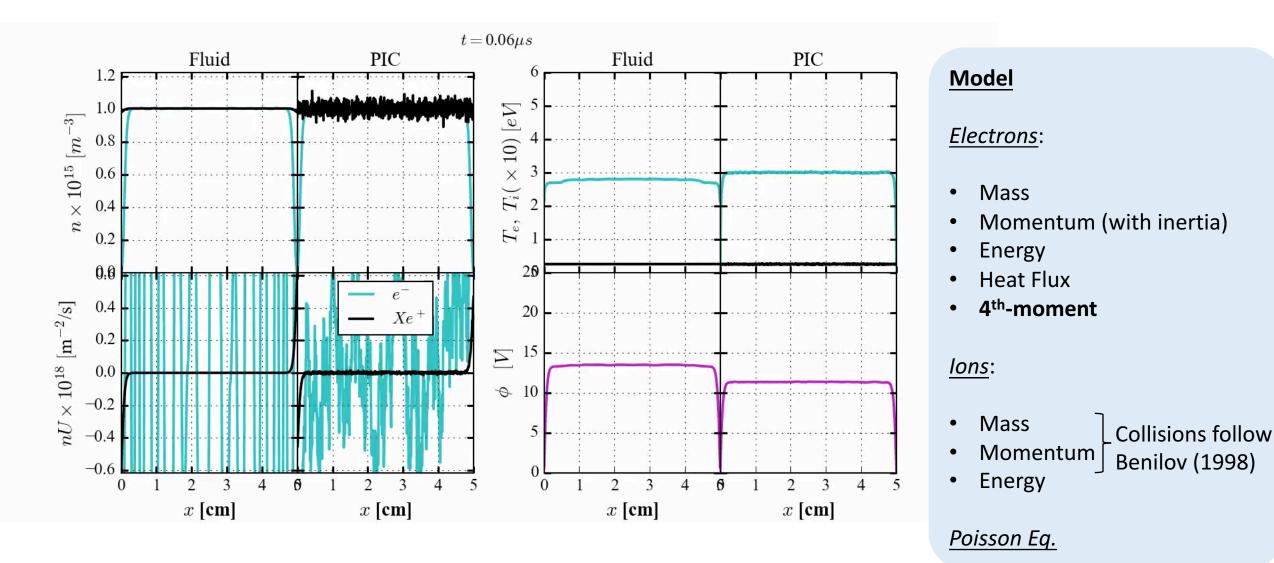


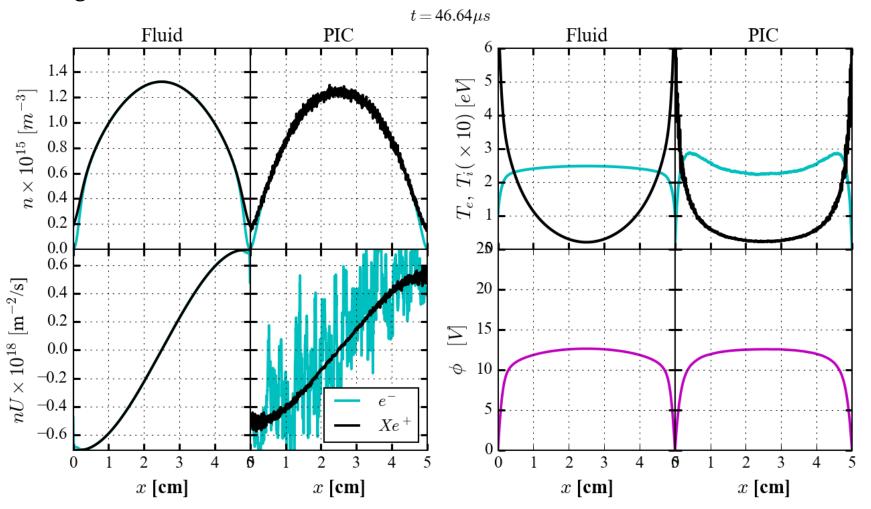
Table: Collisional processes

Comparison electrons (5eqs) + ions (3 eqs) and PIC



Comparison electrons (5eqs) + ions (3 eqs) and PIC

Converged solution



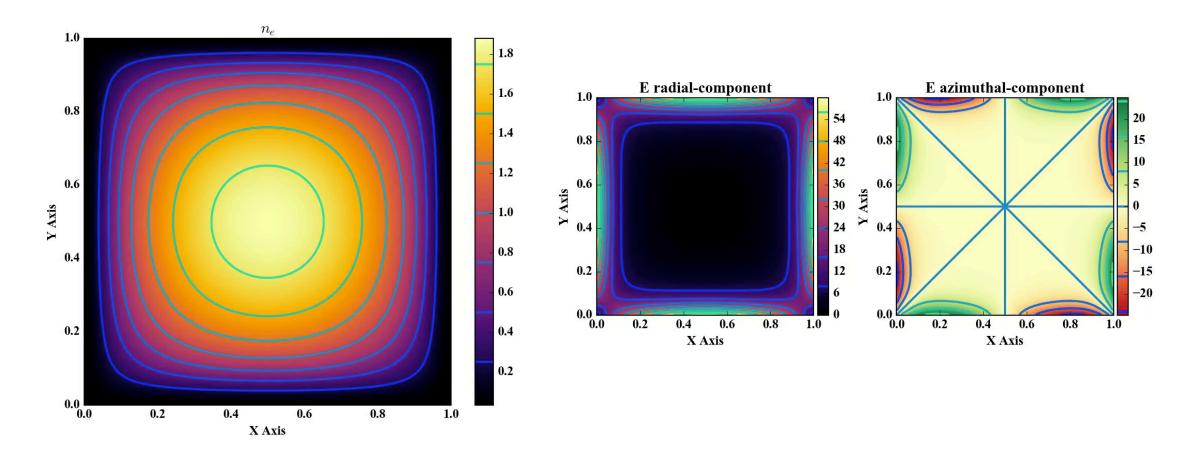
Comparison

- Density is closer
- Temperature drops at the seath
- Ion temperature is well captured
- Flux at the wall is overestimated
- The potential drop is identical

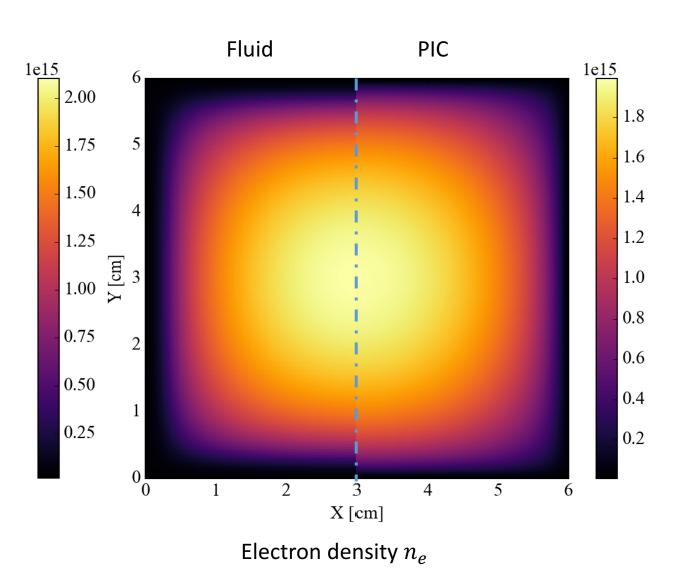
Perspectives: extension to multi-dimensions

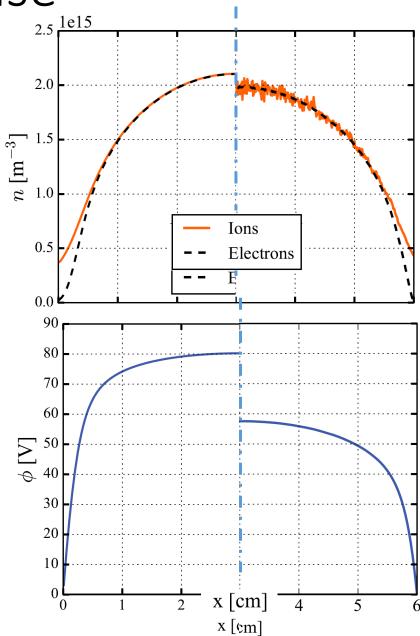
1. An isothermal moment model (including electron inertia) is implemented in a 2D code for magnetized discharges. The set of equations allows for representing instabilities and situations with non-ambipolar diffusion.

Work of Louis Reboul's PhD thesis.



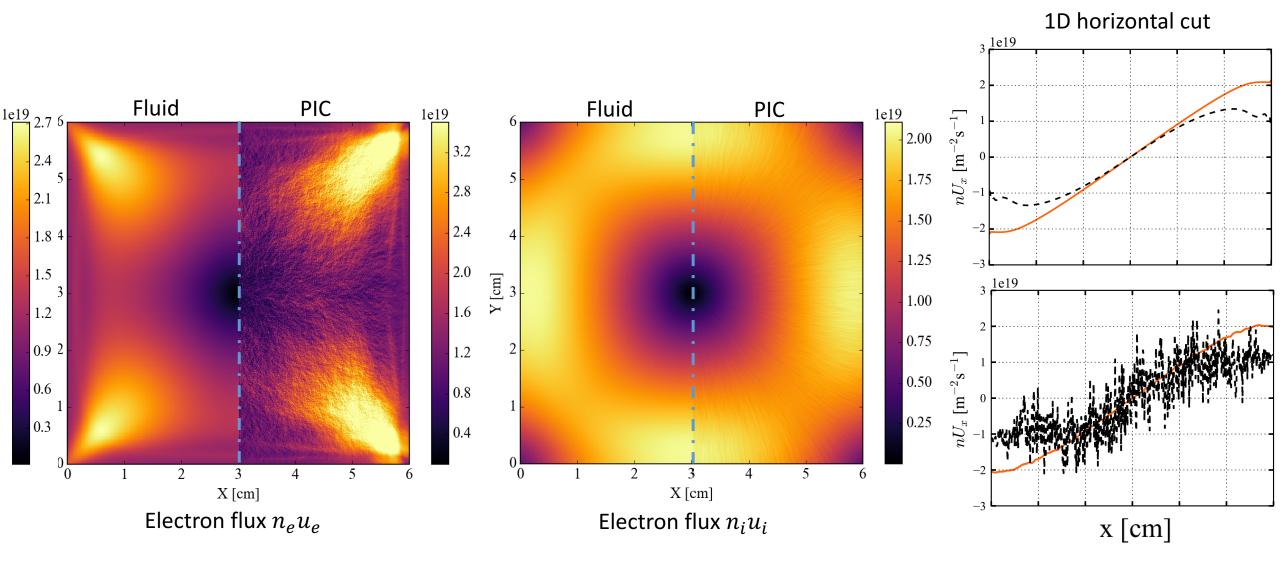
Isothermal non-magnetized case





1D horizontal cut

Isothermal non-magnetized case



Summary and conclusions

- 1. The model seems promising for capturing the non-equilibrium processes under the conditions of interest of ICP discharges (high-density plasmas in large systems)
- 2. The comparison with PIC is also promising and shows the improvement due to the fourth moment
- 3. The model would help to study 2D/3D effects that might be important (especially in the presence of a magnetic field)
- 4. Paper with derivation of the model and comparison to experiments in preparation.

AKNOWLEDGEMENTS

- **Team at LPP: B. Esteves, L. Reboul**, T. Ben Slimane, T. Charoy, F. Petronio, A. Tavant, R. Lucken, A. Bourdon, P. Chabert
- **CMAP: L. Reboul**, M. Massot, T. Pichard,
- **Maison de la Simulation**: P. Kestener, S. Kokh
- **UTIAS:** C. Groth
- VKI: T. Magin, S. Bocelli

This research is funded by the project POSEIDON supported by ANR (ANR-16-CHIN-003-01)