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Figure 3. Example of EVDF and EEPF with di↵erent qe and �e for a temperature
Te = 4 eV and density ne = 1017 m�3. �e < 0 corresponds to Druyvesteyn-
like distribution functions, whereas �e > 0 corresponds to two-temperature like
distributions.

distribution function, whereas the fourth moment �e modifies the kurtosis, which has

an impact in the energy distribution function. For negative values of �e, the EEDF has

a Druyvesteyn-like shape, whereas, �e > 0 has a two-temperature like shape.

The transport fluxes are obtained by introducing the distribution function into

Eq. (16). The explicit expressions of the transport fluxes for this closure read

reijk =
2

5

�
qei�jk + qej�ik + qek�ij

�
, reij =

5

2

p2e
⇢e

(1 +�e) �ij, and reiijjk = 14
pe
⇢e
qek .

(21)

3.3. Determination of the production terms due to collisions

In this work, we consider the dominant collisional processes in a low-pressure discharge

in a noble gas. These are elastic collisions with gas, excitation collisions and electron

impaction ionization collisions with the gas and elastic collisions between electrons.

Consequently, we will write the production terms in Eqs. (11)-(15) as the sum of the

contribution of the di↵erent collisional processes, which yields,

ṅe = ṅ(iz)
e , R = R(el)

eg , Q = Q(el)
eg +Q(inel)

eg , (22)

Rhf = Rhf,(el)
eg +Rhf,(el)

ee , Q(4) = Q4,(el)
eg +Q4,(inel)

eg +Q4,(el)
ee .

Note that the only contribution for the electron mass production is a result of

the ionization collisions. As the electron-electron elastic collision conserves mass,

momentum, and energy, their contribution appears only in the production of heat-

flux and fourth moment. The electron-neutral elastic collisions conserve mass, so they

exchange momentum, energy, heat-flux, and kurtosis. Finally, as the inelastic collisions

are less frequent than the elastic collisions, their contribution to the anisotropic moments

(momentum and heat-flux) is neglected with respect to the elastic ones, as done in the

two-term Boltzmann approach [29]. Alternatively, their contribution to the isotropic

part of the distribution function, i.e., energy and kurtosis losses, will be taken into

account.
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Figure 8. Comparison of 1D moment model with experiments at pg = 15 mTorr and
Pabs = 200 W.

interestingly, the EEDF that are reconstructed with the fourth moment also resemble

quantitatively to these measure in the experiments. The results at pg = 5 mTorr using

the moment model improve the results of the Maxwellian model. However they compare

worse than the higher pressure. This mismatch can be due to di↵erent reasons, such

as the heating of the gas and local transport that cannot be reduced to a 1D model.

Nevertheless, the comparison of the computed EEDF with the experimental ones is also

promising, particular in regions not influenced by the RF field.
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Motivation:	Plasma	Propulsion	with	Electronegative	gases
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• Size = 8 cm x 12 cm x 12cm
• pressure = 1 – 100 mTorr
• Power = 200 W
• B-Field = 140-245 G
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Motivation:	Plasma	Propulsion	with	Electronegative	gases

Density and temperature measurement*

*Aanesland, Ane & Bredin, Jérôme & Chabert, Pascal & Godyak, V.. (2012). Applied Physics Letters..
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MODELING CHALLENGES

• Non-local transport (Due to geometry and magnetic field)
• Global models cannot describe the discharge
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Motivation:	Plasma	Propulsion	with	Electronegative	gases
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EEDF Measurements*
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MODELING CHALLENGES

• Non-local transport (Due to geometry and magnetic field)
• Global models cannot describe the discharge

• Non-Maxwellian EEDF
• Domain is too big for PIC simulation

*Aanesland, Ane & Bredin, Jérôme & Chabert, Pascal & Godyak, V.. (2012). Applied Physics Letters..



Motivation:	Plasma	Propulsion	with	Electronegative	gases

PIC simulation*

*R. Lucken. (2019). PhD Thesis
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Figure 3.6: Normalized density map for 21 LPPic simulation runs after instability
saturation for various values of the pressure (vertical axis) and the magnetic field
(horizontal axis).
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• Non-Maxwellian EEDF
• Domain is too big for PIC simulation

• Anomalous transport
• Presence of magnetic field
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Electronegative plasma transport theory*

*Sheridan, Chabert, Boswell. (1999). Plasma Sources Sci. Technol. 8 (1999) 457–462

Power

I2 I-

e-

I+

I-

I+

MODELING CHALLENGES

• Non-local transport (Due to geometry and magnetic field)
• Global models cannot describe the discharge

• Non-Maxwellian EEDF
• Domain is too big for PIC simulation

• Anomalous transport
• Presence of magnetic field

• Negative Ions
• Change transport, produce instabilities, and double layers

A low-pressure electronegative discharge

can calculate the potential at the plasma edge ¥s , and then the
flux there since we know both u(¥) and ñ(¥). At the plasma
edge, the right-hand side of equation (12) can be neglected,
so that ¥s must obey
(e°¥s + Æ e°∞ ¥s )2 ° (e°¥s + Æ∞ e°∞ ¥s )

£
∑
1° e°¥s +

Æ

∞
(1° e°∞ ¥s )

∏
= 0. (13)

This condition is equivalent to equating the ion velocity in
equation (11) to the Bohm speed for a plasma with two
negative Boltzmann components [10]

u2B = (e°¥s + Æ e°∞ ¥s )/(e°¥s + Æ∞ e°∞ ¥s ).

For Æ = 0, ¥s = ° ln 1/2 and the positive ion density at
the sheath edge [5] is ñs = 1/2. From the more accurate
kinetic model [4], it is found that ñs = 0.4871. Thus, the
fluid and kinetic models give nearly the same results. We
can approximate ¥s for the cases Æ ø 1 and Æ ¿ 1 from
equation (13), and then calculate the flux. We find

0s

ne0cse

= ñsus =

8
>>><

>>>:

1
2
+
1
2∞

Æ Æ ø 1

1
p

∞

∑ µ
1
2

∂1/∞
+
1
2
Æ

∏
Æ ¿ 1.

(14)
For ∞ = 1 (i.e. the two negative species are
indistinguishable), both expressions reduce to the same
correct expression. The Æ-dependence of the flux when Æ is
small and∞ is large is quiteweak,makingmeasurement of the
negative ion concentration using electrostatic probes difficult
in this regime. (Similar expressions can also be derived for
a spherical presheath [10].)

When ∞ is large enough, equation (13) admits two
physical solutions for the plasma edge potential, as shown in
figure 1(a). The same behaviour was also noted in [10] and
[11] for similar models. For our model, multiple solutions
exist for ∞ > 9.90, in agreement with the analytic result
of 5 +

p
24 given in [10]. (This is related to the fact that

our model and that of [10] have the same Bohm velocity.)
Consequently, the flux at the plasma edge calculated using
ñ and u from equations (10) and (11) is double-valued
(figure 1(b)). (The model investigated here has also been
considered by Franklin and Snell [14], although they did
not consider the implications of multiple solutions.) It has
been proposed [10] that the sheath always forms at the first
singularity encountered (i.e. the smaller value of ¥s), leading
to the conclusion that the flux changes discontinuously at
some value of Æ (see figure 4 in [10]). This assumption is
reasonable in the context of the plasma approximation, as
charge neutrality cannot be twice violated. However, as we
show in the next section from a consideration of non-neutral
solutions, the physically correct solution for ¥s is that which
gives the greater flux. Consequently, the flux is found to vary
continuously with the negative ion concentration.

3.2. Non-neutral solutions

In the previous section, we considered the properties of
solutions for the plasma approximation, q = 0. In this
section we relax that assumption and integrate the governing

Figure 1. (a) The potential at the sheath–plasma boundary and
(b) the positive ion flux there as a function of Æ = n°0/ne0 for
∞ = Te/T° = 20. In (a) we show that equation (13) admits
multiple solutions over a finite range of Æ. Here the line labelled
BA give the transition proposed in [10], while the line labelled
SCB gives that found in this paper. In (b) we plot the flux
calculated using the solution in (a), and compare it to numerical
solutions of the model equations with q > 0 (open diamonds and
circles). Open circles indicate values of Æ for which the numerical
solutions are oscillatory. The numerically computed flux agrees
with the larger value of the flux found for the plasma
approximation.

ordinary differential equations numerically to calculate the
flux at the sheath–plasma boundary as a function of negative
ion concentration and temperature.

The discharge equations (9a)–(9d) are solved as an
initial value problem rather than as a boundary value problem
(BVP). (When posed as a BVP this is an eigenvalue problem,
further complicating matters.) That is, given initial values at
the centre of the discharge, we integrate equations (9a)–(9d)
towards the wall. The solution is completely determined by
the upstream conditions, since the positive ion flow is solely
outwards. To carry out this program, we require a set of
consistent initial conditions. In particular, on the centre plane
we know u0, ¥0, "0 = 0. For q = 0, we have ñ0 = 1 + Æ,
while for q > 0, ñ0 is determined by the cubic equation

ñ20(ñ0 ° 1° Æ) = 2q2. (15)

When q2 ø 1, ñ0 º 1+Æ+2q2—the space charge imbalance
in the plasma is of order q2.

Having found the initial conditions it might seem that
we need merely integrate the governing equations using any

459
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Modeling	plasmas:	from	microscopic	to	macroscopic

Hamiltonian dynamics for N-particle system
Microscopic description

Kinetic Equation

2.2. Kinetic equation

5. Excited states are not tracked nor radiation is taken into account.

2.2.2 The kinetic equation

The evolution of the distribution function f↵(~v, ~x, t) of the species ↵ is de-
scribed by the Boltzmann kinetic equation,

@f↵
@t

+ ~v · ~rf↵ +
~F↵

m↵

· ~r~vf↵ =

✓
�f

�t

◆

coll

, (2.3)

where ~r and ~r~v are the gradient operators in ~x and ~v respectively. The
left-hand side of Eq. (2.3) represents the substantial derivative in time of the
distribution function, whereas the right-hand side is the variation in time of
the distribution function produced by binary collisions. The external force
exerted on particles ↵, when the plasma is under the e↵ect of electromagnetic
fields, is written as

~F↵ = q↵
⇣

~E + ~v ⇥ ~B
⌘

, (2.4)

where the electric and magnetic field are denoted as ~E and ~B respectively,
q↵ is the electric charge, and m↵ is the mass of the particles ↵.

The collisional term accounts for two types of contributions,

✓
�f

�t

◆

coll

= J↵ + Jr

↵
. (2.5)

Here J↵ is the elastic collision integral that considers the collision between
pairs of particles where the type of particle species is conserved. Jr

↵
is the

inelastic collision integral that considers the collision that lead to formation
of new plasma species.

The operator J↵ is written as the sum over the binary collisions,

J↵ =
X

�

J↵�(f↵, f�), (2.6)

where J↵�(f↵, f�) is the collision operator of the binary collision between the
species ↵ and �. The partial collisional operator for elastic collisions, can be
retrieved under the ”molecular chaos” assumption (e.g., [6, 88]) as follows

J↵�(f↵, f�) =

Z Z �
f 0
↵
f 0
�

� f↵f�
�
�↵� |~v↵ � ~v� |d⌦̂d~v� (2.7)

19

Resolution methods:

1. PIC (stochastic resolution)
ü 2D “realistic” simulations
✗ Numerical noise and cost

2. Direct resolution of Boltzmann
ü No noise
✗ More expensive and difficult

3. Local and non-local (two-term) Boltzmann 
solvers 
ü No noise and efficient
✗ “Local” or 1D

More info:

K. Hara, PhD thesis (2015)
V.	Kolobov,	R.	Arslanbekov and	D.	Levko (2018)

𝑓(𝑥⃗, 𝑣⃗, 𝑡)

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑣/

7

𝑓(𝑥⃗, 𝑣⃗, 𝑡)

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

More info:

Birdsall,	A.B.	Langdon	(1998)
Benchmarks:	Turner	et	al.	(2012),	Charoy et	al.	(2019)

𝑓(𝜀, 𝑡)

𝐸𝑛𝑒𝑟𝑔𝑦𝜀/

More info:

Hagelaar & Pitchford (2005)
A	Tejero-del-Caz	et	al	(2019)
Kortshagen,	Busch	and	Tsendin (1996)
Igor	D.	Kaganovich and	Oleg	Polomarov (2003)



Modeling	plasmas:	from	microscopic	to	macroscopic
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Hamiltonian dynamics for N-particle system
Microscopic description

Kinetic Equation

2.2. Kinetic equation

5. Excited states are not tracked nor radiation is taken into account.

2.2.2 The kinetic equation

The evolution of the distribution function f↵(~v, ~x, t) of the species ↵ is de-
scribed by the Boltzmann kinetic equation,
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where ~r and ~r~v are the gradient operators in ~x and ~v respectively. The
left-hand side of Eq. (2.3) represents the substantial derivative in time of the
distribution function, whereas the right-hand side is the variation in time of
the distribution function produced by binary collisions. The external force
exerted on particles ↵, when the plasma is under the e↵ect of electromagnetic
fields, is written as

~F↵ = q↵
⇣

~E + ~v ⇥ ~B
⌘

, (2.4)

where the electric and magnetic field are denoted as ~E and ~B respectively,
q↵ is the electric charge, and m↵ is the mass of the particles ↵.

The collisional term accounts for two types of contributions,

✓
�f

�t

◆

coll

= J↵ + Jr

↵
. (2.5)

Here J↵ is the elastic collision integral that considers the collision between
pairs of particles where the type of particle species is conserved. Jr
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is the

inelastic collision integral that considers the collision that lead to formation
of new plasma species.

The operator J↵ is written as the sum over the binary collisions,

J↵ =
X

�

J↵�(f↵, f�), (2.6)

where J↵�(f↵, f�) is the collision operator of the binary collision between the
species ↵ and �. The partial collisional operator for elastic collisions, can be
retrieved under the ”molecular chaos” assumption (e.g., [6, 88]) as follows
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�
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Fluid Equations

We take moments (weighted average in the velocity space)

ü 2D/3D with complex geometries
✗ Closure and pure kinetic effects

𝑛567, 𝑛/897,												𝑛;<;=>?897

𝑣567, 								𝑣/897 ,													𝑣;<;=>?897

𝑇567, 𝑇/897, 			 𝑇;<;=>?897

𝑬, 𝑩

Closure models:
• Moments methods (Grad’s, max-entropy)
• Chapman-Enskog expansion
• Hybrid models (kinetic-fluid)
• Euler (MHD) equations 

Which	model	to	use	in	
weakly	collisional	
conditions?

Plasma discharge 4

Figure 1. Scattering cross sections for xenon

2.2. Moment closure equations

2.2.1. General moment equations We define the moments of the distribution function

of the species ↵ 2 {+, e} as the weighted average over the velocity space, as follows,

M↵(~x, t) =

Z

1
V↵f↵d

3v = hV↵f↵i , (12)

We define the brackets h·i as the average over the velocity space. The weights used for

the average are monomials of the velocity, as follows,

V↵(~v) =

✓
m↵, m↵vi,

1

2
m↵vivj, m↵vivjvk, · · ·

◆T

, (13)

Note that the indices i, j, k use the common Einstein tensorial notation.

With these definitions, the evolution equation for the moments quantities are

obtained by averaging the kinetic equation with the previously defined weights.

Consequently, the general form of the moment equations reads,

@M↵

@t
+ ~r · h~vV↵f↵i = �

*
V↵

~F↵

m↵
· ~r~vf↵

+
+

⌧
V↵

✓
�f↵
�t

◆

coll

�
(14)

By abuse of notation, in the following, we will drop the subscript ↵ as the equations for

both electrons and ions have the same structure. We can write the system of moment

equations in compact form as

@

@t
M +

@

@xj
Fj = SE +C. (15)

By using the weights of Eq. (36), the general set of equations reads

M (xi, t) =

0

BBBBB@

⇢

⇢ui
1
2⇢uiuj +

1
2Pij

⇢uiujuk + 3P(ijuk) +Qijk
...

1

CCCCCA
, (16)
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Regime of validity of each model

Plasma discharge 3

distribution function fails to represent the physics. On the other hand, for kinetic

models, the collisional e↵ects are still very present, which makes the resolution of the

kinetic equation very sti↵ (in the case of deterministic solvers) or having problems to

correctly represent the tail of the distribution function (in particle-in-cell solvers). Note

that the e � e average mean free path has been computed by considering the electrons

distribution function to be a Maxwellian and, in reality, EEDF of low-pressure ICP

discharges tends to be depopulated at high-energy. For this reason, Knee of Fig. 1 is

overestimated as the Coulombian interaction strongly decays for increasing energies.

Finally, Kneg ⇠ (0.1�10), depending on the discharge pressure. As the gas is in a much

lower temperature than the electrons and some of the collisions will be inelastic, the

electron-gas collisions will contribute to perturb the equilibrium of the electrons.

In this paper, we will propose a model that extends the validity of the fluid equations

for the range of Knee ⇠ (10�3
�1) by the resolution of moment hierarchies that consider

non-equillibrium distribution functions that deviate from Maxwellian distributions.

Figure 1. Comparison between the collisional characteristic lengths and the reactor
characteristic size length in an argon discharge.

2.2. The transfer equation and non-equilibrium distribution functions

Moment hierarchies, also commonly know as fluid equations, can be derived by taking

velocity moments from the Boltzmann equation. When the complete set of moments

are based on a complete functional space, the description is formally equivalent to the

kinetic equation [5]. However, this results in an infinite coupled system, which resolution

would be as complex as the resolution of the kinetic equation itself. For this reason the

moment hierarchy must be truncated to a certain number of moments. Most of the

moment models used in plasmas [6, 7, 8] truncate the hierarchy to the heat-flux vector.

As we will show later, this truncation do not allow for capturing deviations in the EEDF.

In this section, we review the derivation of moment hierarchies.

Moment Closures & Kinetic Equations 2. Kinetic Theory of Gases C. P. T. Groth c�2020

2.2 Flow Regimes for a Monatomic Gas

10-3 10-2 10-1 100 101 1020Kn �

Continuum Transition Free-Molecular

NSF
Boltzmann Equation

Moment Closures
DSMC

When the mean free path is large compared to the characteristic
length scale (i.e., for Kn ⇡ 1 and Kn > 1), thermal equilibrium
cannot be maintained and the continuum hypothesis fails.
Consequently, conventional fluid dynamic descriptions break down.
For such flows, a microscopic description of fluid behaviour is
required, such as that provided by gaskinetic theory. The latter is
valid for the full range of Knudsen numbers.

13

Moment Closures & Kinetic Equations 2. Kinetic Theory of Gases C. P. T. Groth c�2020

2.2 Flow Regimes for a Monatomic Gas

Four flow regimes may be identified:
I Continuum Regime

– Kn  0.01
– collision-dominated flow
– conventional fluid-dynamic equations (i.e., the Navier-Stokes

Equations) are valid
I Slip-Flow Regime

– 0.01 < Kn  0.1
– fluid dynamic equations can be augmented with slip boundary

conditions for the flow velocity and temperature
– Knudsen layer analyses are generally used to formulate

appropriate boundary conditions
14

Chap-Ensk.
Moment	closures

PIC/MCC

Electron collisional mean free path in argon

9

Kn	=	 D;69	E?;;	F6>G
=G6?6=>;?/7>/=	<;95>G	

Kinetic
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distribution function fails to represent the physics. On the other hand, for kinetic
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kinetic equation very sti↵ (in the case of deterministic solvers) or having problems to

correctly represent the tail of the distribution function (in particle-in-cell solvers). Note

that the e � e average mean free path has been computed by considering the electrons

distribution function to be a Maxwellian and, in reality, EEDF of low-pressure ICP

discharges tends to be depopulated at high-energy. For this reason, Knee of Fig. 1 is

overestimated as the Coulombian interaction strongly decays for increasing energies.

Finally, Kneg ⇠ (0.1�10), depending on the discharge pressure. As the gas is in a much

lower temperature than the electrons and some of the collisions will be inelastic, the
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2.2. The transfer equation and non-equilibrium distribution functions

Moment hierarchies, also commonly know as fluid equations, can be derived by taking

velocity moments from the Boltzmann equation. When the complete set of moments

are based on a complete functional space, the description is formally equivalent to the

kinetic equation [5]. However, this results in an infinite coupled system, which resolution

would be as complex as the resolution of the kinetic equation itself. For this reason the

moment hierarchy must be truncated to a certain number of moments. Most of the

moment models used in plasmas [6, 7, 8] truncate the hierarchy to the heat-flux vector.

As we will show later, this truncation do not allow for capturing deviations in the EEDF.

In this section, we review the derivation of moment hierarchies.
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– fluid dynamic equations can be augmented with slip boundary
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– Knudsen layer analyses are generally used to formulate
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Figure 1. Scattering cross sections for xenon

2.2. Moment closure equations

2.2.1. General moment equations We define the moments of the distribution function

of the species ↵ 2 {+, e} as the weighted average over the velocity space, as follows,

M↵(~x, t) =

Z

1
V↵f↵d

3v = hV↵f↵i , (12)

We define the brackets h·i as the average over the velocity space. The weights used for

the average are monomials of the velocity, as follows,

V↵(~v) = (m↵, m↵vi, m↵vivj, m↵vivjvk, · · · )T , (13)

Note that the indices i, j, k use the common Einstein tensorial notation.

With these definitions, the evolution equation for the moments quantities are

obtained by averaging the kinetic equation with the previously defined weights.

Consequently, the general form of the moment equations reads,

@M↵

@t
+r · h~vV↵f↵i =

⌧
q↵
m↵

r� ·r~vf↵

�
+

⌧
V↵

�f↵
�t

����
c

�
(14)

By abuse of notation, in the following, we will drop the subscript ↵ as the equations for

both electrons and ions have the same structure. We can write the system of moment

equations in compact form as

@

@t
M +

@

@xj
Fj = SE +C. (15)

By using the weights of Eq. (28), the general set of equations reads

M (xi, t) =

0

BBBBB@

⇢

⇢ui

⇢uiuj + Pij

⇢uiujuk + Pijuk + Pjkui + Pikuj +Qijk
...

1
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, (16)
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Multi-fluid description

Moment hierarchy

Microscopic description

2.2. Kinetic equation

5. Excited states are not tracked nor radiation is taken into account.

2.2.2 The kinetic equation

The evolution of the distribution function f↵(~v, ~x, t) of the species ↵ is de-
scribed by the Boltzmann kinetic equation,

@f↵
@t

+ ~v · ~rf↵ +
~F↵

m↵

· ~r~vf↵ =

✓
�f

�t

◆

coll

, (2.3)

where ~r and ~r~v are the gradient operators in ~x and ~v respectively. The
left-hand side of Eq. (2.3) represents the substantial derivative in time of the
distribution function, whereas the right-hand side is the variation in time of
the distribution function produced by binary collisions. The external force
exerted on particles ↵, when the plasma is under the e↵ect of electromagnetic
fields, is written as

~F↵ = q↵
⇣

~E + ~v ⇥ ~B
⌘

, (2.4)

where the electric and magnetic field are denoted as ~E and ~B respectively,
q↵ is the electric charge, and m↵ is the mass of the particles ↵.

The collisional term accounts for two types of contributions,

✓
�f

�t

◆

coll

= J↵ + Jr

↵
. (2.5)

Here J↵ is the elastic collision integral that considers the collision between
pairs of particles where the type of particle species is conserved. Jr

↵
is the

inelastic collision integral that considers the collision that lead to formation
of new plasma species.

The operator J↵ is written as the sum over the binary collisions,

J↵ =
X

�

J↵�(f↵, f�), (2.6)

where J↵�(f↵, f�) is the collision operator of the binary collision between the
species ↵ and �. The partial collisional operator for elastic collisions, can be
retrieved under the ”molecular chaos” assumption (e.g., [6, 88]) as follows

J↵�(f↵, f�) =

Z Z �
f 0
↵
f 0
�

� f↵f�
�
�↵� |~v↵ � ~v� |d⌦̂d~v� (2.7)
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the plasma distribution function reads,

@fe
@t

+ ~v ·rfe +
er�

me
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����
c

, (1)

@f+
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�f+
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����
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, (2)

r2� = e
ne � n+

✏0
, (3)

Here, f is the distribution function, � is the electric potential, and �f
�t

��
c
is the rate of

change of the distribution function due to collisions. The number densities are computed

by integrating over the velocity space, as follows,

ne(~x, t) =

Z

1
fe(~v, ~x, t) d

3v and n+(~x, t) =

Z

1
f+(~v, ~x, t) d

3v. (4)

In low-pressure gas discharges, the plasma is weakly ionized, i.e., ne,+ ⌧ ng.

Therefore, as the electron-neutral collisions are very ine�cient to transfer energy to

the neutral gas particles and the number of ions is much smaller than the gas particles,

the gas is assumed to be at rest at constant temperature. For this reason, the neutral

gas is characterized by a Maxwellian distribution function at rest, as follows,

fg(~v, ~x, t) = ng

✓
mg

2⇡kBTg

◆3/2

exp

✓
� mgv2

2kBTg

◆
. (5)

Note that at higher pressure, the plasma can become more ionized and the collisions

between the ions and the neutrals can heat the gas. This phenomenon is not considered

in this paper.

2.1.1. Collisional terms As the plasma is weakly ionized, we neglect the collisions

between charged particles. Consequently, only the collisions between the plasma species

↵ 2 {e,+} ↵ 2 {electrons, ions, gas}and the neutral gas are considered. For these

type of collisions, the common collisional operator is the so-called Boltzmann collisional

operator that reads

�f↵
�t

����
↵g

=

Z Z �
f 0
↵f

0
g � f↵fg

�
|~vR|Id⌦d~vg, (6)

where the tilde denotes for the quantities after the collision, the velocity di↵erence is

|~vR| = |~v↵ � ~vg|, the solid angle of the collisions is d⌦ = sin ✓d✓d' with ✓ the scattering

angle and ' the azimuthal angle of the collisions, I(~vR,⌦) is the di↵erential scattering

cross section that is defined as

I(~vR,⌦) =
b

sin ✓

����
db

d✓

���� (7)

where b is the impact parameter.
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Here, Pij is the pressure tensor,

Pij =

Z

1
(vi � ui)(vj � uj)f↵d

3v, (19)

Qijk is a third-rank tensor that represents the heat flux,

Qijk =

Z

1
(vi � ui)(vj � uj)(vk � uk)f↵d

3v, (20)

and Rijkl is a fourth-rank tensor that represents the flux of heat flux,

Rijkl =

Z

1
(vi � ui)(vj � uj)(vk � uk)(vl � ul)f↵d

3v. (21)

The rank of the tensors can be reduced by assuming isotropic properties, as it will

be done in the following. Note that the moment equations results in a hierarchy of

equations in which the flux of each equation depends on the subsequent equation. For

these reason, we need to take some assumptions in order to obtain a closed system of

equations.

Note that for convenience, we use the notation for the symmetrization of a tensor,

for example,

u(jEi) =
1

2
(uiEj + ujEi) and P(ijuk) =

1

3
(Pijuk + Pjkui + Pikuj) . (22)

The collisional part will be treated in a separate subsection as it depends on the

type of interaction.

2.2.2. The 8-M model for the electrons As explained before, in gas discharges the

behaviour of electrons and ions can be very despair due to their di↵erent masses.

Without magnetic field, the pressure tensor and the heat flux tend to be isotropic.

Additionally, the forces that dominate the transport of the charged species are mostly

the electromagnetic forces and therefore they are larger than the strain tensor. However,
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Collisional	integrals:
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2.2. The transfer equation and non-equilibrium distribution functions

Moment hierarchies can be derived by taking velocity moments of the Boltzmann

equation. The derivation of the general set of moment equations is discussed in

monographs on the topic such as the references [47, 31, 35, 6]. The moment models solves

for a system of coupled partial di↵erential equations that obtained from the general

transfer equation. The general transfer equation is obtained by the multiplication of

the kinetic equation, Eq. (1) by a weight function  (x,v, t) and integrating over the

velocity space v, as follows,

@

@t

Z

1
 fedv +r ·

Z

1
 vfedv �

Z

1
fe

✓
@ 

@t
+ v ·r 

◆
dv

�

Z

1
fe
er�

me
·rv dv =

Z

1
 
�fe
�t

����
c

dv. (4)

Most of the models that are used in low-temperature plasmas consider  equal to 1,

mev, mec2e/2, and mec2ece/2, which correspond to the balance equations for the particle

density ne, momentum ⇢eue, isotropic internal energy 3/2pe, and heat-flux vector qe.

Here, the peculiar velocity is defined as ce = v � ue. Some models such as these

of references [8, 31] consider the evolution of the anisotropic pressure tensor, which

correspond to  = 1/2meceicej . This anisotropies in the pressure tensor of electrons,

which yields the viscosity, might be more important in the case of magnetized plasmas.

As in this paper we consider unmagnetized cases, we consider in the following only

an isotropic pressure tensor in the electrons but higher-moment perturbations in the

isotropic part of the distribution function.

Eq. (4) presents two main di�culties, one related to the closure of the flux terms

(second term of the equation) and the derivation of the production terms due to collisions

(right-hand-side of the equation). The di�culty of closing the flux terms comes from the

fact that the infinite hierarchy of equations needs to be truncated. This means that the

transport fluxes, i.e., the second term in Eq. (4), need to be modeled as a combination

of the previous moment variables. This operation of truncating the hierarchy involves

an assumption in the shape of the velocity distribution function. Probably, the most

widely used closures for rarified flows is Grad’s closure [33] and the maximum-entropy

closure [34]. Grad’s closure proposes to write the distribution function as a combination

of Hermite polynomials, which can be written as,

f (Grad)
e (x,v, t) = f (M)

�
1 + a+ Aicei +Bijceicej +Dijkceicejcek + ...

�
, (5)

where the drifting Maxwellian distribution function is defined as

f (M)
e (ce,x, t) = ne

✓
�e
⇡

◆3/2

exp
�
��ec

2
e

�
with �e =

me

2eTe
, (6)

where the electron temperature is in eV. The coe�cients A,Ai, Bij.Dijk... can be easily

written as an expression of the fluid variables, by injecting the previous definition in the• Not	able	to	capture	depletion	at	the	tails
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Figure 2. Comparison between experimental EEDFs and the fit using di↵erent
functional basis of di↵erent momentum models. The experimental EEDFs are
measured in an argon ICP discharge at di↵erent pressures.

In Fig. 2, we show experimental measurements of the EEDF in an argon ICP

discharge at di↵erent pressures. As mentioned in the introduction, the EEDF is depleted

at high energies due to the e↵ect of inelastic collisions and the losses of energetic electrons

at the sheaths. We perform a fit of the experimental EEDF by using a Maxwellian

and Grad’s and the maximum entropy distribution functions up to the fourth order

polynomial in velocity (i.e., Eiijj). As it can be noted, the Maxwellian distribution

function largely overestimates the electron population at high energies whereas Grad’s

and maximum-entropy functions are able to capture accurately both the low and high

energies. Despite both approximations imply a great improvement with respect to a

Maxwellian, the Grad approximation can underestimate the population of the tail at

highly perturbed distribution functions, whereas the maximum-entropy can fit smoothly

the tail. This comparison with experimental measurements show the potential of
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2.2. The transfer equation and non-equilibrium distribution functions

Moment hierarchies can be derived by taking velocity moments of the Boltzmann

equation. The derivation of the general set of moment equations is discussed in

monographs on the topic such as the references [47, 31, 35, 6]. The moment models solves

for a system of coupled partial di↵erential equations that obtained from the general

transfer equation. The general transfer equation is obtained by the multiplication of

the kinetic equation, Eq. (1) by a weight function  (x,v, t) and integrating over the

velocity space v, as follows,
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Most of the models that are used in low-temperature plasmas consider  equal to 1,

mev, mec2e/2, and mec2ece/2, which correspond to the balance equations for the particle

density ne, momentum ⇢eue, isotropic internal energy 3/2pe, and heat-flux vector qe.

Here, the peculiar velocity is defined as ce = v � ue. Some models such as these

of references [8, 31] consider the evolution of the anisotropic pressure tensor, which

correspond to  = 1/2meceicej . This anisotropies in the pressure tensor of electrons,

which yields the viscosity, might be more important in the case of magnetized plasmas.

As in this paper we consider unmagnetized cases, we consider in the following only

an isotropic pressure tensor in the electrons but higher-moment perturbations in the

isotropic part of the distribution function.

Eq. (4) presents two main di�culties, one related to the closure of the flux terms

(second term of the equation) and the derivation of the production terms due to collisions

(right-hand-side of the equation). The di�culty of closing the flux terms comes from the

fact that the infinite hierarchy of equations needs to be truncated. This means that the

transport fluxes, i.e., the second term in Eq. (4), need to be modeled as a combination

of the previous moment variables. This operation of truncating the hierarchy involves

an assumption in the shape of the velocity distribution function. Probably, the most

widely used closures for rarified flows is Grad’s closure [33] and the maximum-entropy

closure [34]. Grad’s closure proposes to write the distribution function as a combination

of Hermite polynomials, which can be written as,

f (Grad)
e (x,v, t) = f (M)

�
1 + a+ Aicei +Bijceicej +Dijkceicejcek + ...

�
, (5)

where the drifting Maxwellian distribution function is defined as

f (M)
e (ce,x, t) = ne
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�e
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◆3/2

exp
�
��ec

2
e

�
with �e =

me

2eTe
, (6)

where the electron temperature is in eV. The coe�cients A,Ai, Bij.Dijk... can be easily

written as an expression of the fluid variables, by injecting the previous definition in the

• Is	able	to	capture	well	the	both	low	and	high-energies.

ü Advantages:	Fast to	compute	the	closure.	Can	be	used	
with	Boltzmann	and	Landau	collisional	operators.

✘ Disadvantages:	Positivity of	distribution	function,	
problems	at	high	Mach	numbers	(loss	of	hyperbolicity)
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Figure 2. Comparison between experimental EEDFs and the fit using di↵erent
functional basis of di↵erent momentum models. The experimental EEDFs are
measured in an argon ICP discharge at di↵erent pressures.

In Fig. 2, we show experimental measurements of the EEDF in an argon ICP

discharge at di↵erent pressures. As mentioned in the introduction, the EEDF is depleted

at high energies due to the e↵ect of inelastic collisions and the losses of energetic electrons

at the sheaths. We perform a fit of the experimental EEDF by using a Maxwellian

and Grad’s and the maximum entropy distribution functions up to the fourth order

polynomial in velocity (i.e., Eiijj). As it can be noted, the Maxwellian distribution

function largely overestimates the electron population at high energies whereas Grad’s

and maximum-entropy functions are able to capture accurately both the low and high

energies. Despite both approximations imply a great improvement with respect to a

Maxwellian, the Grad approximation can underestimate the population of the tail at

highly perturbed distribution functions, whereas the maximum-entropy can fit smoothly

the tail. This comparison with experimental measurements show the potential of

studying higher-moment closures with both Grad and maximum-entropy methods in

low-pressure discharges.

In the following, we will derive a model based on Grad’s method that considers the

balance equation of the contracted fourth moment (as we will see, it is associated to the

coe�cient Eiijj). This moment is related to the kurtosis of the distribution function

and is fundamental in order to represent the physics in low-temperature plasmas.

Additionally, as the heat-flux vector is solved, also perturbations in the skewness of

the distribution function will be accounted for.

3. A Grad’s model including deviations of the skewness and kurtosis

In this section, we derive the system of equations including the balance equations for the

heat-flux and the fourth moment. The analytical integration of the collisional operator

as well as the collisional rates as a function of the Chapman-Cowling integrals are

presented in the Appendix A.
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definition of the macroscopic variables. Once the coe�cients are written as a function

of the moment variables, the closure of the flux of the last equation is obtained as a

function of the previous moments.

Alternatively, Levermore’s closure [34] proposes a distribution function that is

obtained by the maximization of the entropy, which results in a velocity distribution

distribution function that has the following form,

f (MaxEnt)
e (x,v, t) = f (M) exp

�
a+ Aicei +Bijceicej +Dijkceicejcek + ...

�
. (7)

The coe�cients A,Ai, Bij.Dijk... need to be computed numerically by maximizing the

entropy functional. In the previous expression, there are two aspects that are worth

noting. First, the Druyvensteyn distribution function, that is widely used to describe the

electron energy distribution function in low-temperature plasmas, can be regarded as a

particular case of a maximum-entropy distribution function. Second, Grad’s distribution

function can be regarded as the Taylor expansion of the maximum-entropy distribution

function when the coe�cients A,Ai, Bij, Dijk... are small (see Chapter 4 by Kremer [35]

for a complete demonstration).

Concerning the closure of the collisional terms, i.e., RHS of Eq. (4), Grad’s

expansion has a crucial advantage as compared to maximum-entropy closures. The

Hermite polynomial expansion allows for obtaining exact analytical closed expressions

of the integral of the Boltzmann operator. These terms contain collisional rates that can

be expressed by the Chapman-Cowling integrals [7] that are integrals over the relative

velocity of the collision cross section. For this reason, in this paper we will follow

Grad’s method. Nevertheless, due to the advantages of maximum-entropy closures, the

extension of this closure for multi-component plasmas can potentially overcome some

limitations associated to Grad’s closure.

2.3. Moment models with perturbed EEDF

In this paper, we are interested in moment models that have perturbations in the EEDF.

Grad’s energy distribution function is obtained by the integration over the angles of the

phase space, which reads,
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e (E) =
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✓
E

Te

◆
+ Eiijj
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+ ...
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exp

✓
�

E

Te

◆
,

(8)

where the energy, expressed in eV, is defined as eE = mev2/2. Note that the anisotropic

terms do not contribute to the EEDF as their integration over the angles of the phase

space vanishes. Consequently, only the elements in the trace of the even polynomial

contribute to the EEDF perturbations, i.e., Bii and Eiijj. In Grad’s 13-Moment, the

tensor Bii, which is related to the viscosity, is traceless and hence the EEDF is still

Maxwellian. For this reason, an additional moment, solving for the double-trace of the

fourth-moment is needed in order to capture deviations in the EEDF.
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Figure 2. Comparison between experimental EEDFs and the fit using di↵erent
functional basis of di↵erent momentum models. The experimental EEDFs are
measured in an argon ICP discharge at di↵erent pressures.

In Fig. 2, we show experimental measurements of the EEDF in an argon ICP

discharge at di↵erent pressures. As mentioned in the introduction, the EEDF is depleted

at high energies due to the e↵ect of inelastic collisions and the losses of energetic electrons

at the sheaths. We perform a fit of the experimental EEDF by using a Maxwellian

and Grad’s and the maximum entropy distribution functions up to the fourth order

polynomial in velocity (i.e., Eiijj). As it can be noted, the Maxwellian distribution

function largely overestimates the electron population at high energies whereas Grad’s

and maximum-entropy functions are able to capture accurately both the low and high

energies. Despite both approximations imply a great improvement with respect to a

Maxwellian, the Grad approximation can underestimate the population of the tail at

highly perturbed distribution functions, whereas the maximum-entropy can fit smoothly

the tail. This comparison with experimental measurements show the potential of

studying higher-moment closures with both Grad and maximum-entropy methods in

low-pressure discharges.

In the following, we will derive a model based on Grad’s method that considers the

balance equation of the contracted fourth moment (as we will see, it is associated to the

coe�cient Eiijj). This moment is related to the kurtosis of the distribution function

and is fundamental in order to represent the physics in low-temperature plasmas.

Additionally, as the heat-flux vector is solved, also perturbations in the skewness of

the distribution function will be accounted for.

3. A Grad’s model including deviations of the skewness and kurtosis

In this section, we derive the system of equations including the balance equations for the

heat-flux and the fourth moment. The analytical integration of the collisional operator

as well as the collisional rates as a function of the Chapman-Cowling integrals are

presented in the Appendix A.
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presented in the Appendix A.

• Is	able	to	capture	well	the	both	low	and	high-energies.

ü Advantages:	Positivity.	Druyvesteyn is	a	particular	case.	
Good	at	supersonic	speeds	(to	represent	shocks).

✘ Disadvantages:	Difficult	and	slow	to	compute	closure.	
Collisional	terms	mostly	based	on	BGK	operator.	
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• Moment	distribution	seem	to	be	able	to	capture	depletion	at	high	energies:

• Need	to	go	for	higher	moments	(>	heat	flux).
• What	is	the	simplest	model	capturing	the	excess	kurtosis?
• How	do	we	obtain	the	closure	of	fluxes	and	collisional	terms?
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at the sheaths. We perform a fit of the experimental EEDF by using a Maxwellian

and Grad’s and the maximum entropy distribution functions up to the fourth order

polynomial in velocity (i.e., Eiijj). As it can be noted, the Maxwellian distribution

function largely overestimates the electron population at high energies whereas Grad’s

and maximum-entropy functions are able to capture accurately both the low and high

energies. Despite both approximations imply a great improvement with respect to a

Maxwellian, the Grad approximation can underestimate the population of the tail at

highly perturbed distribution functions, whereas the maximum-entropy can fit smoothly

the tail. This comparison with experimental measurements show the potential of

studying higher-moment closures with both Grad and maximum-entropy methods in

low-pressure discharges.

In the following, we will derive a model based on Grad’s method that considers the

balance equation of the contracted fourth moment (as we will see, it is associated to the

coe�cient Eiijj). This moment is related to the kurtosis of the distribution function

and is fundamental in order to represent the physics in low-temperature plasmas.

Additionally, as the heat-flux vector is solved, also perturbations in the skewness of

the distribution function will be accounted for.

3. A Grad’s model including deviations of the skewness and kurtosis

In this section, we derive the system of equations including the balance equations for the

heat-flux and the fourth moment. The analytical integration of the collisional operator

as well as the collisional rates as a function of the Chapman-Cowling integrals are

presented in the Appendix A.
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Step 1: Choose number of moments and assume a distribution function shape

Moment weights:

Fluid variables

Distribution function:
(Grad’s (1949))

Grad’s	method:	Derivation	of	the	equations

Maxwellian Polynomial Expansion

Coefficients?
𝑎, 𝐴/, 𝐵, 𝐷/, 𝐸

Mass
(1 eq.)

Momentum
(3 eq.)

Energy
(1 eq.)

Heat Flux
(3 eq.)

Total = (9 eqs.)
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of mass, momentum, energy, viscosity, and heat-flux) has a Maxwellian EEDF as the

tensor Bii, which is related to the viscosity, is traceless and Eiijj is nil. Therefore, only

moment models considering moments higher the heat-flux are able to capture deviations

in the EEDF. Similarly, in the maximum entropy model, only moments considering the

fourth-order moment (e.g., 14-Moment model) are able to capture the depletion at high-

energies.

In the following, we will derive a model that considers the evolution of the fourth-

order moment within the Grad’s model. This moment is related to the kurtosis of

the distribution function and is fundamental in order to represent the physics in low-

temperature plasmas. Despite the maximum-entropy model has properties that are

advantageous with respect to Grad’s model, the derivation of the collisional closure can

be both computationally and analytically very di�cult with respect to Grad’s method.

Nevertheless, their properties as well as its relation to Grad’s method will be exploited

in the results. Similarly, we will consider a model where the anisotropies in the pressure

tensor, i.e., electron viscosity, are neglected as compared to the isotropic deviations in

the EEDF. Future work will tackle the closure of the viscosity terms, including the

fourth moment equations.

3. A Grad’s model including the fourth-order moment

3.1. High-order moment model system of equations

As discussed in the previous sections, we will consider a model with a transport equation

that considers the isotropic part of the fourth-order moment. For this purpose, our

moment model considers the following weights into the transfer equation (Eq. (4)),

 =
⇣
me, mev,

me

2
c2e ,

me

2
c2ece,

me

2
c4e

⌘T

. (11)

With these weights, the macroscopic state of the plasma is characterized by the nine

fields of particle density ne, hydrodynamic velocity uei , isotropic pressure pe, heat flux

vector qe, and the contracted fourth moment peiijj , where the subindices i, j refer to the

directions following the Einstein notation. These fields are defined with the distribution

function as follows,

ne =

Z

1
fedv, ⇢euei =

Z

1
mevifedv, pe =

1

3

Z

1
mec

2
efedv, (12)
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1
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Z

1
mec

2
e ceifedv, and peiijj =

1

2

Z

1
mec

4
efedv.

The system of transport equations is obtained by introducing the weights (11) in

Contracted fourth-
moment
(1 eq.)
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the transfer equation (4). The equations read
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Here, new fluxes appear in the equations that are defined as
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(18)

These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, ~R, Qeg, ~Rhf , and Q(4). In section

sect, we will derive these terms by introducing the Grad’s distribution function and the

collisional operator for electron-gas elastic and inelastic collisions as well as electron-

electron elastic collisions.

3.2. Determination of the Grad’s expansion distribution function and closure fluxes

We consider the Grad’s expansion for nine moments,

f (9M)(ci) = f (M)
e (ci)

�
1 + a+ Aicei +Bc2e +Dic

2
e cei + Ec4e

�
, (19)

where f (M)
e is the Maxwellian distribution function, as defined in Eq. (25).

Before computing the coe�cients, we will analyze the definition of the fourth

moment for a Maxwellian distribution function, which reads
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15

2

p2e
⇢e
. (20)

As done previously in Kremer, we define a new nondimensional variable for the fourth

moment. The variable measures the deviation of the fourth moment with respect to the

Maxwellian, which defined as,

�e =
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dv (21)

This definition will be very important in the following as it will help us to measure the

kurtosis of the distribution function and, consequently, the deviations of the EEDF from

a Maxwellian distribution.
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the transfer equation (4). The equations read
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These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, ~R, Qeg, ~Rhf , and Q(4). In section

sect, we will derive these terms by introducing the Grad’s distribution function and the

collisional operator for electron-gas elastic and inelastic collisions as well as electron-

electron elastic collisions.

3.2. Determination of the Grad’s expansion distribution function and closure fluxes

We consider the Grad’s expansion for nine moments,

f (9M)(ci) = f (M)
e (ci)
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2
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�
, (19)

where f (M)
e is the Maxwellian distribution function, as defined in Eq. (25).

Before computing the coe�cients, we will analyze the definition of the fourth

moment for a Maxwellian distribution function, which reads
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As done previously in Kremer, we define a new nondimensional variable for the fourth

moment. The variable measures the deviation of the fourth moment with respect to the

Maxwellian, which defined as,
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This definition will be very important in the following as it will help us to measure the

kurtosis of the distribution function and, consequently, the deviations of the EEDF from

a Maxwellian distribution.
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These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, ~R, Qeg, ~Rhf , and Q(4). In section

sect, we will derive these terms by introducing the Grad’s distribution function and the

collisional operator for electron-gas elastic and inelastic collisions as well as electron-

electron elastic collisions.

3.2. Determination of the Grad’s expansion distribution function and closure fluxes

We consider the Grad’s expansion for nine moments,

f (9M)(ci) = f (M)
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where f (M)
e is the Maxwellian distribution function, as defined in Eq. (25).

Before computing the coe�cients, we will analyze the definition of the fourth

moment for a Maxwellian distribution function, which reads
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As done previously in Kremer, we define a new nondimensional variable for the fourth

moment. The variable measures the deviation of the fourth moment with respect to the

Maxwellian, which defined as,
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This definition will be very important in the following as it will help us to measure the

kurtosis of the distribution function and, consequently, the deviations of the EEDF from

a Maxwellian distribution.
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neuei = ṅe, (13)

me
@

@t
neuei +

@

@xj

�
meneueiuej + pe�ij

�
= �eneEi +Ri, (14)

3

2

@pe
@t

+
@

@xk

✓
qek +

3

2
peuek

◆
+ pe

@uek

@xk
= Q, (15)

@qei
@t

+
@

@xj

�
reij + qeiuej

�
+ reijk

@uek

@xj
+ qej

@uei

@xj
�

5

2

pe
⇢e

@pe
@xj

�ij = �
5

2

pe
me

eEi +Rhf
i , (16)

@

@t
peiijj +

@

@xk

�
reiijjk + peiijjuek

�
+ 8reij

@uei

@xj
� 8

qei
⇢e

@pe
@xj

�ij = �4
qek
me

eEk +Q(4). (17)

Here, new fluxes appear in the equations that are defined as

reijk =
1

2

Z

1
meceicejcekfedv, reij =

1

2

Z

1
mec

2
e ceicejfedv, and reiijjk =

1

2

Z

1
mec

4
e cekfedv.

(18)

These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, ~R, Qeg, ~Rhf , and Q(4). In section

sect, we will derive these terms by introducing the Grad’s distribution function and the

collisional operator for electron-gas elastic and inelastic collisions as well as electron-

electron elastic collisions.

3.2. Determination of the Grad’s expansion distribution function and closure fluxes

We consider the Grad’s expansion for nine moments,

f (9M)(ci) = f (M)
e (ci)
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where f (M)
e is the Maxwellian distribution function, as defined in Eq. (25).

Before computing the coe�cients, we will analyze the definition of the fourth

moment for a Maxwellian distribution function, which reads
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As done previously in Kremer, we define a new nondimensional variable for the fourth

moment. The variable measures the deviation of the fourth moment with respect to the

Maxwellian, which defined as,
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This definition will be very important in the following as it will help us to measure the

kurtosis of the distribution function and, consequently, the deviations of the EEDF from

a Maxwellian distribution.
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By introducing the Grad’s expansion of Eq. (19) into the definitions of Eq. (12),

we can easily obtain the coe�cients that define the distribution function as a function

of the macroscopic variables. Thus, the distribution function reads

fe(x, ce, t) = f (M)
e

⇢
1 +

8�2
e

5⇢e
qeicei

✓
�ec

2
e �

5

2

◆
+
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15

8
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5�e

2
c2e +

�2
e

2
c4e

◆
�e

�
. (22)

We recall that the definition of �e and f (M)
e were given in Eq. (25). It can be proven

that the distribution function of Eq. (22) is the distribution function of the form of

Eq. (19) that maximizes the entropy. In Fig. 3, we show the influence of the heat flux

and the fourth moment in both the velocity and energy distribution function. As it can

be seen, the heat flux qe modifies the skewness of the distribution function, whereas the

fourth moment �e modifies the kurtosis, which has an impact in the energy distribution

function.

Figure 3. Example of EVDF and EEPF with di↵erent qe and �e for a temperature
Te = 4 eV and density ne = 1017 m�3. �e < 0 corresponds to Druyvesteyn-
like distribution functions, whereas �e > 0 corresponds to two-temperature like
distributions.

The transport fluxes are obtained by introducing the distribution function into

Eq. (18). The explicit expressions of the transport fluxes for this closure read

reijk =
2

5

�
qei�jk + qej�ik + qek�ij

�
, reij =
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2

p2e
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qek .

(23)

3.3. Determination of the production terms due to collisions

In this work, we consider the dominant collisional processes in a low-pressure discharge

in a noble gas. These are elastic collisions with gas, inelastic collisions and electron

impaction ionization collisions with the gas and elastic collisions between electrons.

Consequently, we will write the production terms as the sum of the contribution of the

di↵erent collisional processes:

ṅe = ṅ(iz)
e , R = R(el)

eg , Q = Q(el)
eg +Q(inel)

eg +Q(iz)
eg , (24)

Rhf = Rhf,(el)
eg +Rhf,(el)

ee , Q(4) = Q4,(el)
eg +Q4,(inel)

eg +Q4,(iz)
eg +Q4,(el)

ee .
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Figure 3. Example of EVDF and EEPF with di↵erent qe and �e for a temperature
Te = 4 eV and density ne = 1017 m�3. �e < 0 corresponds to Druyvesteyn-
like distribution functions, whereas �e > 0 corresponds to two-temperature like
distributions.

impaction ionization collisions with the gas and elastic collisions between electrons.

Consequently, we will write the production terms in Eqs. (11)-(15) as the sum of the

contribution of the di↵erent collisional processes, which yields,

ṅe = ṅ(iz)
e , R = R(el)

eg , Q = Q(el)
eg +Q(inel)

eg , (22)

Rhf = Rhf,(el)
eg +Rhf,(el)

ee , Q(4) = Q4,(el)
eg +Q4,(inel)

eg +Q4,(el)
ee .

Note that the only contribution for the electron mass production is a result of

the ionization collisions. As the electron-electron elastic collision conserves mass,

momentum, and energy, their contribution appears only in the production of heat-

flux and fourth moment. The electron-neutral elastic collisions conserve mass, so they

exchange momentum, energy, heat-flux, and kurtosis. Finally, as the inelastic collisions

are less frequent than the elastic collisions, their contribution to the anisotropic moments

(momentum and heat-flux) is neglected with respect to the elastic ones, as done in the

two-term Boltzmann approach [22]. Alternatively, their contribution to the isotropic

part of the distribution function, i.e., energy and kurtosis losses, will be taken into

account.

As usually done in low-temperature plasmas, we consider the neutral gas to be a

Maxwellian at a di↵erent temperature than electrons, i.e.,
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✓
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. (23)

3.3.1. Electron-gas elastic collisions In the kinetic equation, we consider the following

Boltzmann collisional operator for the electron-gas collisions,
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eg
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f 0
ef
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g � fefg

�
g�d⌦dvg. (24)

Here, the tilde denotes for the quantities after the collision, the velocity di↵erence is

g = |ve � vg|, the solid angle of the collisions is d⌦ = sin�d�d' with � the scattering
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Comparison	with	experiments:	Different	positions

15

Inductive Argon discharge
• p = 1mTorr
• P = 200 W

*Aanesland, Ane & Bredin, Jérôme & Chabert, Pascal. (2014). Plasma Sources Science and Technology. 23. 044003.

𝑛; = 3.14 ⋅ 10X`𝑚a

𝑇; = 4.54	𝑒𝑉

𝑛; = 7.17 ⋅ 10Xd𝑚a

𝑇; = 3.81	𝑒𝑉

𝑛; = 2.24 ⋅ 10X`𝑚a

𝑇; = 4.16	𝑒𝑉

Fit

𝑛; = 2.97 ⋅ 10X`𝑚a

𝑇; = 3.97	𝑒𝑉
Δ; = −0.144

𝑛; = 2.11 ⋅ 10X`𝑚a

𝑇; = 3.58	𝑒𝑉
Δ; = −0.16

𝑛; = 6.5 ⋅ 10Xd𝑚a

𝑇; = 3.04	𝑒𝑉
Δ; = −0.26

• Maxwellian EEDF	
overestimates	the	
temperature	and	the	density

• The	EEDF	with	the	4th moment	
is	able	to	fit	the	experimental	
measurements

• The	deviation	from	Maxwellian
of	the	fourth	moment	is	small,	
i.e.,	|Δi| < 1

We compare the Grad’s EEDF to the experiments:



Grad’s	method:	Derivation	of	the	equations
Step 1: Choose number of moments and assume a distribution function shape

Step2: Compute distribution function coefficients with the definition of the moments.

Step 3: With the computed distribution function, we obtain the closure flux
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the transfer equation (4). The equations read
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Here, new fluxes appear in the equations that are defined as
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These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, ~R, Qeg, ~Rhf , and Q(4). In section

sect, we will derive these terms by introducing the Grad’s distribution function and the

collisional operator for electron-gas elastic and inelastic collisions as well as electron-

electron elastic collisions.

3.2. Determination of the Grad’s expansion distribution function and closure fluxes

We consider the Grad’s expansion for nine moments,

f (9M)(ci) = f (M)
e (ci)
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2
e cei + Ec4e

�
, (19)

where f (M)
e is the Maxwellian distribution function, as defined in Eq. (25).

Before computing the coe�cients, we will analyze the definition of the fourth

moment for a Maxwellian distribution function, which reads
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As done previously in Kremer, we define a new nondimensional variable for the fourth

moment. The variable measures the deviation of the fourth moment with respect to the

Maxwellian, which defined as,

�e =
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This definition will be very important in the following as it will help us to measure the

kurtosis of the distribution function and, consequently, the deviations of the EEDF from

a Maxwellian distribution.
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These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, ~R, Qeg, ~Rhf , and Q(4). In section

sect, we will derive these terms by introducing the Grad’s distribution function and the

collisional operator for electron-gas elastic and inelastic collisions as well as electron-

electron elastic collisions.

3.2. Determination of the Grad’s expansion distribution function and closure fluxes

We consider the Grad’s expansion for nine moments,
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e is the Maxwellian distribution function, as defined in Eq. (25).
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moment for a Maxwellian distribution function, which reads

p(M)
eiijj =

1

2

Z

1
mec

4
ef

(M)
e dv =

15

2

p2e
⇢e
. (20)

As done previously in Kremer, we define a new nondimensional variable for the fourth

moment. The variable measures the deviation of the fourth moment with respect to the

Maxwellian, which defined as,

�e =
peiijj � p(M)

eiijj

p(M)
eiijj

=
2

15

⇢e
p2e

Z

1
mec

4
e

�
fe � f (M)

e

�
dv (21)

This definition will be very important in the following as it will help us to measure the

kurtosis of the distribution function and, consequently, the deviations of the EEDF from

a Maxwellian distribution.
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By introducing the Grad’s expansion of Eq. (19) into the definitions of Eq. (12),

we can easily obtain the coe�cients that define the distribution function as a function

of the macroscopic variables. Thus, the distribution function reads

fe(x, ce, t) = f (M)
e

⇢
1 +

8�2
e

5⇢e
qeicei

✓
�ec

2
e �

5

2

◆
+

✓
15

8
�

5�e

2
c2e +

�2
e

2
c4e

◆
�e

�
. (22)

We recall that the definition of �e and f (M)
e were given in Eq. (25). It can be proven

that the distribution function of Eq. (22) is the distribution function of the form of

Eq. (19) that maximizes the entropy. In Fig. 3, we show the influence of the heat flux

and the fourth moment in both the velocity and energy distribution function. As it can

be seen, the heat flux qe modifies the skewness of the distribution function, whereas the

fourth moment �e modifies the kurtosis, which has an impact in the energy distribution

function.

Figure 3. Example of EVDF and EEPF with di↵erent qe and �e for a temperature
Te = 4 eV and density ne = 1017 m�3. �e < 0 corresponds to Druyvesteyn-
like distribution functions, whereas �e > 0 corresponds to two-temperature like
distributions.

The transport fluxes are obtained by introducing the distribution function into

Eq. (18). The explicit expressions of the transport fluxes for this closure read

reijk =
2

5

�
qei�jk + qej�ik + qek�ij

�
, reij =

5

2

p2e
⇢e

(1 +�e) �ij, and reiijjk = 28
pe
⇢e
qek .

(23)

3.3. Determination of the production terms due to collisions

In this work, we consider the dominant collisional processes in a low-pressure discharge

in a noble gas. These are elastic collisions with gas, inelastic collisions and electron

impaction ionization collisions with the gas and elastic collisions between electrons.

Consequently, we will write the production terms as the sum of the contribution of the

di↵erent collisional processes:

ṅe = ṅ(iz)
e , R = R(el)

eg , Q = Q(el)
eg +Q(inel)

eg +Q(iz)
eg , (24)

Rhf = Rhf,(el)
eg +Rhf,(el)

ee , Q(4) = Q4,(el)
eg +Q4,(inel)

eg +Q4,(iz)
eg +Q4,(el)

ee .

The flux of the 
heat flux is:

The flux of the 
Fourth moment:
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3.2. Determination of the Grad’s expansion distribution function and closure fluxes

We consider the Grad’s expansion for nine moments,

f (9M)(ci) = f (M)
e (ci)

�
1 + a+ Aicei +Bc2e +Dic

2
e cei + Ec4e

�
, (17)

where f (M)
e is the Maxwellian distribution function, as defined in Eq. (23).

Before computing the coe�cients, we will analyze the definition of the fourth

moment for a Maxwellian distribution function, which reads

p(M)
eiijj =

1

2

Z

1
mec

4
ef

(M)
e dv =

15

2

p2e
⇢e
. (18)

As done previously by Kremer [39], we define a new normalized variable for the fourth

moment. The variable, that in the following will be referred to as the nondimensional

excess kurtosis, measures the deviation of the fourth moment with respect to the

Maxwellian, which is defined as,

�e =
peiijj � p(M)

eiijj

p(M)
eiijj

=
2

15

⇢e
p2e

Z

1
mec

4
e

�
fe � f (M)

e

�
dv (19)

This definition is very important in the following as it will help us to measure the

deviations of the EEDF from a Maxwellian distribution.

By introducing the Grad’s expansion of Eq. (17) into the definitions of Eq. (10),

we can easily obtain the coe�cients that define the distribution function as a function

of the macroscopic variables. Hence the distribution function reads
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We recall that the definition of �e and f (M)
e were given in Eq. (23). In Fig. 3, we show

the influence of the heat flux and the fourth moment in both the velocity and energy

distribution function. As it can be seen, the heat flux qe modifies the skewness of the

distribution function, whereas the fourth moment �e modifies the kurtosis, which has

an impact in the energy distribution function. For negative values of �e, the EEDF has

a Druyvesteyn-like shape, whereas, �e > 0 has a two-temperature like shape.

The transport fluxes are obtained by introducing the distribution function into

Eq. (16). The explicit expressions of the transport fluxes for this closure read

reijk =
2

5

�
qei�jk + qej�ik + qek�ij

�
, reij =

5

2

p2e
⇢e

(1 +�e) �ij, and reiijjk = 14
pe
⇢e
qek .

(21)

3.3. Determination of the production terms due to collisions

In this work, we consider the dominant collisional processes in a low-pressure discharge

in a noble gas. These are elastic collisions with gas, excitation collisions and electron



Grad’s	method:	Derivation	of	the	equations
Step 1: Choose number of moments and assume a distribution function shape

Step2: Compute distribution function coefficients with the definition of the moments.

Step 3: With the computed distribution function, we obtain the closure flux

Step 4: Compute collisional integrals (Moments of the Boltzmann collisional operator)
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Derivation	of	collisional	source	terms:	Elastic	Collisions

Mechanics	of	the	collision

1.!. Boltzmann'• kinetic equation 11 

db 

Figure 1.1. Diagram of binary collision 

Substituting Eq. (1.2.6) into the second Eq. (1.2.3) and taking 
account of (1.2.4) leads to the condition 

I 

g = g, (1.2. 7) 
which implies that the resulting vector of the relative velocity g trans-
forms into without changing its value g = jgj . The change of di-
rection of g with respect to g is governed by the polar and azimuthal 
angles x and I{J, respectively (Fig. 1.1). Then 

g' = gicos x + gj sin x cos I{J + gk sin x sin I{J, (1.2.8) 
where i, j, k are perpendicular unit vectors with g directed along i. 

It follows from Eqs. (1.2.4)-(1.2.6) that the inversions of velocities 
are obtained by a mere interchange of the primed and unprimed val-
ues. This property as well as the linearity of equations ensures equal 
Jacobians of direct and inverse transformations. One can easily show 
that the relationships 

dv ordvl(j = dGdg, (1.2.9) 

and 

(1.2.10) 
prove to be valid [1] . 

For further discussion, it would be helpful to introduce the concept 
of differential scattering cross section. Consider a monoenergetic beam 
of particles incident on the force centre at the initial velocity g with 
all possible values of the impact parameter b (Fig. 1.1). The num-
ber of particles scattered per unit time into the solid angle element 
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Steps to compute the elastic collisions:

~ve,~vg,',� (13)
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We	write	the	integrals	as	function	of	Jacobi	variables	and	averaged	cross	sections	
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Derivation	of	collisional	source	terms:	Elastic	Collisions

Momentum	exchange:

Energy	exchange:

Fourth-moment	exchange:
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Derivation	of	collisional	source	terms:	Elastic	Collisions

Momentum	exchange:

Energy	exchange:

Fourth-moment	exchange:

Heat-Flux	exchange:

Plasma discharge 11

skewness perturbation of the distribution function (with the superscript skew). Note

that perturbations of the EEDF, i.e., kurtosis, will have an impact in the collisional

frequencies.

The production of momentum reads
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(29)

Note that the first term is the frictional force and the second is the so-called “thermal”

force, also known as Soret e↵ect, which represents the transport of momentum due to

deviations of the skewness of the distribution function. When the plasma is highly

collisional, the heat-flux can be expressed as a function of the temperature gradients

[7, 6, 2] and hence the name “thermal friction”. The collisional frequencies depend on

Te and �e and the integration of the momentum cross-section in the electron energy.

The analytical expressions are given at the end of this subsection and shown in Fig. 4.
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The first term represents the relaxation of temperatures due to the collisions, that is

corrected by the second term, proportional to�e due to the kurtosis of the EEDF (which

magnitude is much smaller than the first term for Te � Tg). The third term is related

to the heating due to the heat-flux, as in Braginskii.

The heat-flux exchange reads
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skewness perturbation of the distribution function (with the superscript skew). Note

that perturbations of the EEDF, i.e., kurtosis, will have an impact in the collisional

frequencies.

The production of momentum reads
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Note that the first term is the frictional force and the second is the so-called “thermal”

force, also known as Soret e↵ect, which represents the transport of momentum due to

deviations of the skewness of the distribution function. When the plasma is highly

collisional, the heat-flux can be expressed as a function of the temperature gradients

[7, 6, 2] and hence the name “thermal friction”. The collisional frequencies depend on

Te and �e and the integration of the momentum cross-section in the electron energy.

The analytical expressions are given at the end of this subsection and shown in Fig. 4.
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The first term represents the relaxation of temperatures due to the collisions, that is
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skewness perturbation of the distribution function (with the superscript skew). Note

that perturbations of the EEDF, i.e., kurtosis, will have an impact in the collisional
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Plasma discharge 10

Note that the only contribution for the electron mass production comes from

the ionization collisions. As the electron-electron elastic collision conserves mass,

momentum, and energy, their contribution appears only in the production of heat-

flux and fourth moment. The electron-neutral elastic collisions conserve mass, so they

exchange momentum, energy, heat-flux, and kurtosis. Finally, as the inelastic collisions

are less frequent than the elastic collisions, their contribution to the anisotropic moments

(momentum and heat-flux) is negligible with respect to the elastic ones. On the other

hand, as they loose a large amount of energy, their contribution to the energy and

kurtosis losses will be taken into account.

As usually done in low-temperature plasmas, we consider the neutral gas to be a

Maxwellian at a di↵erent temperature than electrons,i.e.,

f (M)
g (vg,x, t) = ng

✓
�g
⇡

◆3/2

exp
�
��gv

2
g

�
with �g =

mg

2eTg
. (25)

3.3.1. Electron-gas elastic collisions In the kinetic equation, we consider the following

Boltzmann collisional operator for the electron-gas collisions,

�fe
�t

����
eg

=

Z Z �
f 0
ef

0
g � fefg

�
g�d⌦dvg, (26)

rpe = �eneE �mene⌫mue, (27)
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eg

qe
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(28)

where the tilde denotes for the quantities after the collision, the velocity di↵erence

is |g| = |ve�vg|, the solid angle of the collisions is d⌦ = sin�d�d' with � the scattering

angle and ' the azimuthal angle of the collision, and �(g,�) is the di↵erential scattering

cross section. In the following, it will be useful to define the “e↵ective” cross-section,

averaged over the collision angles as

Q(l)(g) = 2⇡

Z 2⇡

0

�
1� cosl �

�
�(g,�) sin�d�, (29)

where, l = 1 is the so-called momentum-transfer cross-section and l = 2 is the viscosity

cross-section. The “e↵ective” cross-section can be found in LXCat.

The moment of the collisional operator is obtained by multiplying by the weight

 e(x,ve, t) and averaging over the electron velocity space and using the reciprocity

relations of the elastic collision (See, e.g., Zhdanov [6]),

Z

1
 e
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Z
( 0

e �  e)fefgg�d⌦dvgdve. (30)

The integration of Eq. (30) can be done analytically but it is a cumbersome process

that involves several mathematical manipulations. Nevertheless, there are references
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The integration of Eq. (28) can be done analytically but it is a cumbersome process

that involves several mathematical manipulations. Nevertheless, there are references

that explain in detail this process [?, ?, ?]. We describe in detail the obtention of the

production terms in Appendix A.1. As it will be shown below, we will group the terms
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Energy	exchange:

Fourth-moment	exchange:

Heat-Flux	exchange:

High-moment closure for electrons 13

e↵ect appears in the second term, which corrects the temperature relaxation if the

EEDF is not Maxwellian. As a result, even if the average energy of the electrons is

equal to the neutral temperature, i.e., Te = Tg, the electrons are not in thermodynamic

equilibrium until �e = 0. Consequently, for �e 6= 0 there is an energy exchange even if

the average energies are equal, since the EEDF is not Maxwellian. This term is positive

if the distribution function is Druyvesteyn-like and negative if, on the contrary is two-

temperature like. Note that, as the energy is conserved in electron-neutral collisions,

this term appears in the gas energy equation with opposite sign. For this reason, this

term, which has been neglected heretofore, may play a role in heating the gas by electron

collisions. The third term is related to the heating in the electrons due to the convection

(c.f., Eq. (2.18) from Braginskii’s theory [8]).

The heat-flux exchange reads

RhF,(el)
eg = �ne⌫

(fr,3)
eg eTeue � ⌫(skew,3)

eg qe. (29)

These expressions are reciprocal to the ones for the momentum exchange. The first

term represents the rate of change of the heat-flux due to convective motions whereas

the second represents the relaxation of the heat-flux due to collisions.
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Finally, the exchange of fourth moment reads,
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The first term represents the loss of fourth moment due to elastic collisions. This term

will force the kurtosis to be negative, hence, to have Druyvesteyn-like shape. The second

term is analogous to the second term in Eq. (28). In this case, for Te = Tg, this term

represents the relaxation of the EEDF to a Maxwelian as the neutrals are assumed to

be a Maxwellian. Finally, the last term represents the modification of the shape of

the EEDF due to the cross action of the skewness and convection terms. This term is

smaller than the previous one under typical discharge conditions. Note that terms of

order O(�eu2
e ) have been neglected.

In Fig. 4, we show the elastic collision rates for an argon plasma, using the formulas

from Appendix A.1.1. Note that the rates depend on the temperature and the shape of

the EEDF. Furthermore, the rate is di↵erent depending on the moment and the e↵ect.

Note that this is more realistic as compared to the BGK simplification that uses the

same relaxation time for all the moments.
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collisions. The third term is related to the heating in the electrons due to the convection

(c.f., Eq. (2.18) from Braginskii’s theory [8]).

The heat-flux exchange reads
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eg eTeue � ⌫(skew,3)

eg qe. (29)

These expressions are reciprocal to the ones for the momentum exchange. The first

term represents the rate of change of the heat-flux due to convective motions whereas

the second represents the relaxation of the heat-flux due to collisions.
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Finally, the exchange of fourth moment reads,
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The first term represents the loss of fourth moment due to elastic collisions. This term

will force the kurtosis to be negative, hence, to have Druyvesteyn-like shape. The second

term is analogous to the second term in Eq. (28). In this case, for Te = Tg, this term

represents the relaxation of the EEDF to a Maxwelian as the neutrals are assumed to

be a Maxwellian. Finally, the last term represents the modification of the shape of

the EEDF due to the cross action of the skewness and convection terms. This term is

smaller than the previous one under typical discharge conditions. Note that terms of

order O(�eu2
e ) have been neglected.

In Fig. 4, we show the elastic collision rates for an argon plasma, using the formulas

from Appendix A.1.1. Note that the rates depend on the temperature and the shape of

the EEDF. Furthermore, the rate is di↵erent depending on the moment and the e↵ect.

Note that this is more realistic as compared to the BGK simplification that uses the

same relaxation time for all the moments.
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Derivation	of	collisional	source	terms:	Elastic	Collisions

The	friction	terms	depend	on	the	kurtosis	perturbation:

Energy	exchange:

Fourth-moment	exchange:
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In the expressions of the frequencies, we use the generalized Chapman-Cowling integrals

that represent the integration of the cross-section over the energies and are defined as
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eg (Te) =

1

2

✓
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⇠2r+3e�⇠2Q(l)d⇠ with ⇠ =
p
�eg. (40)

Figure 4. Electron-gas frictional rates in an argon plasma as a function of the electron
temperature and the electron distribution function kurtosis.

3.3.2. Electron-electron elastic collisions The collisions between charged particles have

have longer range interactions due to the slow decay of the Coulomb potential with the

distance between the particles. Di↵erent collisional operators such as the Landau form

can be considered for the charged particle collisions. Here, we will use a Boltzmann

collision integral with a formal cut-o↵ of the impact parameter at the Debye length,

which gives about the same result of the Landau integral (page 27, [6]).
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g�d⌦dce1 . (41)

Here, g = ce � ce1 is the relative velocity between the two colliding electrons. By

using a Coulomb potential screened at the Debye length, one can calculate analytically

the viscosity cross-section with the Rutherford formula ref here, which is given by the

expression
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(42)

Here, rD is the Debye length and "0 the vacuum permittivity. The derivation of the

production terms is explained in Appendix A.2.

Electron-electron collisions conserve mass and momentum and energy. Thus, only

production terms appear in the heat flux and fourth moment.One can think that these
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Appendix A.1.1. electron-neutral elastic collisional frequencies The collisional

frequencies, which are proportional to the neutral density, read
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In the expressions of the frequencies, we use the generalized Chapman-Cowling integrals

that represent the integration of the cross-section over the energies and are defined as
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Appendix A.2. Electron-electron elastic collisional integrals:

In elastic collisions of the type, e + e1 ! e + e1, the collision conserves the mass,

momentum and energy. To perform these integrals, as opposed to the previous case, we

will work in the reference frame moving at the electron bulk velocity. In this reference

frame, the conservation laws read
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As done before, we perform the integral in the Jacobi variables, as follows,
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Here, g = ce � ce1 . The analogous of Eq. (26) in electron-electron collisions reads
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We use this equation and the relations (A.33) and (A.4) to compute the production of

heat flux exchange (in the reference frame moving at ue) which is given by the integral,
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The	frequencies	depend	on	the	Chapman-Cowling	integrals:
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terms are negligible with respect to the electron-neutral collisions as ng � ne. However,

the Coulomb cross-section is much larger (particularly at low electron temperature) and

some of these terms can become comparable (as discussed in Fig. 1). This is particularly

important in the fourth-moment, since the electron-neutral relaxation of Eq. (32) terms

are proportional to the mass ration me/mg.

The heat-flux exchange reads

RhF
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ee qe. (43)

Alternatively, the exchange of fourth moment reads,
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Both production terms are relaxation terms. This means that the electron-electron

collisions will tend to relax the skewness and kurtosis to zero, which is a Maxwellian

distribution function. The collision frequencies are shown in Fig. ?? and they read
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where the integral of the cross-section over the energies reads
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Note that the later expression takes into account the fact that in electron-electron

collisions the impact energy depend on the relative velocity and because of this the

�e is divided by 2 in the integration.

Figure 5. Electron-electron collisional rates as a function of the electron temperature
and the electron distribution function kurtosis. The Debye length in Eq. (42) is
calculated for ne = 1017 m�3.
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3.3.3. Electron-gas inelastic collisions In this work, we consider a plasma in an atomic

gas. For this reason, two types of inelastic collisions will be considered, the excitation

collisions and the ionization collisions. We restrict our work to the operation conditions

of discharges that are far from chemical equilibrium with Te � Tg. Consequently, only

the forward reaction of the ionization is considered and no recombination is taken into

account. These hypothesis are common in gas discharges at low-pressure [?], but one

should notice that, consequently, the model is not conceived to describe the chemical

equilibrium.

The production of electrons due to ionization reads

ṅ(iz)
e = nengK

(0)
iz . (48)

As mentioned earlier, the contribution to the anisotropic moments is neglected as the

integrals are much smaller that these of the elastic collisions. However, the losses

produced by the inelastic collisions in the energy and fourth-moment are larger than

these of elastic collisions as the later are proportional to the neutral-to-electron mass

ratio whereas the former is proportional to the ionization or excitation potential.

The energy loss due to inelastic collisions read

Q(inel)
eg = �

excit,izX

k=0

nengK
(0)
inel,kng�

⇤
k, (49)

where k is the number of excitation collisions and ionization considered in our model

and �⇤
k is the excitation or ionization potential.

Similarly, the loss of fourth moment reads

Q(inel,4)
eg = �2

excit,izX

k=0

✓
p2e
⇢e

◆
K(1)

inel,k

✓
�⇤
k
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◆
. (50)

The rates depend on the distribution function as follows

K(r)
inel = 4⇡

Z 1

0

v2r+3
e �inelfedve. (51)

This integral will depend on the temperature, density, and kurtosis of the distribution

function. One should note that for large kurtosis |�e| > 0.1 a small part of the tail

can become negative. This negative tail has negligible impact in the elastic collisions.

However, it can produce an error in the computation of the inelastic rates. For this

reason, in the current work we follow two di↵erent approaches. We integrate only

the positive part of the distribution function or we integrate the maximum entropy

distribution function.
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Figure 6. Electron-electron collisional rates as a function of the electron temperature
and the electron distribution function kurtosis.

Appendix A. Computation of the collisional integrals

Appendix A.1. Electron-neutral elastic collisional integrals

In elastic collisions of the type, e + g ! e + g, the collision conserves the momentum

and the energy, as follows,

meve +mgvg = mev
0
e +mgv

0
g and

1

2
mev

2
e +

1

2
mgv

2
g =

1

2
mev

02
e +

1

2
mgv

02
g . (A.1)

The prime denote the properties after the collision. The integral of the collisional

operator will be performed with a change of the integration variables by replacing the

velocities ve and vg by the relative velocity g and the velocity of the center of mass G

(Jacobi variables), that are defined as follows,

G =
meve +mgvg

me +mg
, g = ve � vg (A.2)

The linear momentum conservation implies that G0 = G and the conservation of energy

|g| = |g0
| , so the pre-collisional and post-collisional velocities in the Jacobi variables

read

~ve = G+
µeg

me
g ~vg = G�

µeg
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g, ~v0e = G+

µeg
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g0 and ~v0g = G�

µeg

me
g0 (A.3)

where the reduced mass is defined as µeg = memg/(me +mg).

We can write the relative velocity after the collision in the reference frame of g as

a function of the angles � and ', as

g0 = g
⇣
cos�~i+ sin� cos'~j + sin� sin'~k

⌘
. (A.4)

By using this reference frame, we can write all the terms in the integral of Eq. (28) as

a function of the vectors g and G, and the angles � and '.

Ionization	and	inelastic	rate	largely	depend	on	
the	kurtosis!

Fourth-moment	exchange:

Plasma discharge 13

terms are negligible with respect to the electron-neutral collisions as ng � ne. However,

the Coulomb cross-section is much larger (particularly at low electron temperature) and

some of these terms can become comparable (as discussed in Fig. 1). This is particularly

important in the fourth-moment, since the electron-neutral relaxation of Eq. (32) terms

are proportional to the mass ration me/mg.

The heat-flux exchange reads
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Alternatively, the exchange of fourth moment reads,
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�e. (44)

Both production terms are relaxation terms. This means that the electron-electron

collisions will tend to relax the skewness and kurtosis to zero, which is a Maxwellian

distribution function. The collision frequencies are shown in Fig. ?? and they read
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and the electron distribution function kurtosis. The Debye length in Eq. (42) is
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This integral will depend on the temperature, density, and kurtosis of the distribution

function. One should note that for large kurtosis |�e| > 0.1 a small part of the tail

can become negative. This negative tail has negligible impact in the elastic collisions.

However, it can produce an error in the computation of the inelastic rates. For this

reason, in the current work we follow two di↵erent approaches. We integrate only

the positive part of the distribution function or we integrate the maximum entropy

distribution function.
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Set	of	equations	with	the	fourth	moment	(1D)

Main	influence	of	the	fourth	moment	in	the	equations:

1. All	the	collisional	rates	are	modified,	e.g.,	the	ionization	rate.

2. The	heat	conduction	and	diffusion	will	be	modified	

3. Non-linear	effects	due	to	equations	coupling	and	collisional	source	terms

Density

Momentum

Energy

Heat flux

4th-moment

Electrons (9 eqs in 3D):
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High-moment closure for electrons 9

3.1. High-order moment model system of equations

In this section, we derive a moment model that explicitly evolves the mass, momentum,

energy, heat-flux and the double trace of the fourth moment. Consequently, our moment

model considers the following weights into the transfer equation (Eq. (4)),
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⇣
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me

2
c2e ,

me

2
c2ece,

me

2
c4e

⌘T

. (9)

With these weights, the macroscopic state of the electrons is characterized by nine fields:

particle density ne, hydrodynamic velocity ue, isotropic pressure pe, heat flux vector qe,

and the contracted fourth moment peiijj , where the subindices i, j refer to the directions

following the Einstein notation. These fields are defined with the distribution function

as follows,
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The system of transport equations is obtained by introducing the weights in Eq. (9)

in the transfer equation, Eq. (4). The equations read
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neuei = ṅe, (11)

me
@

@t
neuei +

@

@xj

�
meneueiuej + pe�ij

�
= �eneEi +Ri, (12)

3

2

@pe
@t

+
@

@xk

✓
qek +

3

2
peuek

◆
+ pe

@uek

@xk
= Q, (13)

@qei
@t

+
@

@xj

�
reij + qeiuej

�
+ reijk

@uek

@xj
+ qej

@uei

@xj
�

5

2

pe
⇢e

@pe
@xj

�ij = Rhf
i �

5

2

pe
⇢e

(Ri �meṅeuei) ,
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Here, new fluxes appear in the equations that are defined as
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These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, R, Q, Rhf , and Q(4). In section 3.3,

we will derive these terms by introducing Grad’s distribution function and the collisional

operator for electron-gas elastic and inelastic collisions as well as electron-electron elastic

collisions. Note that the last term in Eqs. (14) and (15) appear because the moments

are taken in a reference frame moving at the electron bulk speed.
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These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, R, Q, Rhf , and Q(4). In section 3.3,

we will derive these terms by introducing Grad’s distribution function and the collisional

operator for electron-gas elastic and inelastic collisions as well as electron-electron elastic

collisions. Note that the last term in Eqs. (14) and (15) appear because the moments

are taken in a reference frame moving at the electron bulk speed.

High-moment closure for electrons 9

3.1. High-order moment model system of equations

In this section, we derive a moment model that explicitly evolves the mass, momentum,

energy, heat-flux and the double trace of the fourth moment. Consequently, our moment

model considers the following weights into the transfer equation (Eq. (4)),
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With these weights, the macroscopic state of the electrons is characterized by nine fields:

particle density ne, hydrodynamic velocity ue, isotropic pressure pe, heat flux vector qe,

and the contracted fourth moment peiijj , where the subindices i, j refer to the directions
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as follows,
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The system of transport equations is obtained by introducing the weights in Eq. (9)

in the transfer equation, Eq. (4). The equations read

@ne

@t
+

@

@xi
neuei = ṅe, (11)
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These fluxes will be computed with the expression of the Grad’s distribution function,

as explained earlier. Additionally, in the right-hand-side of the equation, we have the

production terms resulting from collisions, i.e., ṅe, R, Q, Rhf , and Q(4). In section 3.3,

we will derive these terms by introducing Grad’s distribution function and the collisional

operator for electron-gas elastic and inelastic collisions as well as electron-electron elastic

collisions. Note that the last term in Eqs. (14) and (15) appear because the moments

are taken in a reference frame moving at the electron bulk speed.



Intermediate	ideas	to	take	with	you
1. In ICP discharges we measure kurtosis perturbations in the EEDF, this can be obtained by the resolution 

of the contracted fourth moment.

2. By taking higher moments, the distribution function is more perturbed (less Maxwellian), but the 
mathematical complexity increases.

3. Most of multi-fluid models assume BGK-like operators (all the moments have the same collision 
frequency). 

4. Deviations from the Maxwellian can lead to “unexpected terms” in the equations. These terms are usually 
disregarded in simple fluid models. 

14
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Case	1:	0D	relaxation	in	Argon	plasma	(comparison	to	kinetic	solver)

25

We study a 0D plasma where the electrons are initially at 5 eV and 
Maxwellian distribution

• The elastic and inelastic collisions will cool down the 
electrons as well as change their EEDF.

• We consider the elastic and inelastic processes.

• We compare two models to PIC:

• Maxwellian distribution

• High-order moment

𝑑𝑛;
𝑑𝑡

= Ioniz.

𝑑𝑇;
𝑑𝑡

= Inel. losses + El. losses

𝑑𝑛;
𝑑𝑡

= Ioniz.

𝑑𝑇;
𝑑𝑡

= −(Inel. losses + El. Losses)

vwU
v>

= − Inel. losses + El. Losses + (𝑒 − 𝑒	𝑐𝑜𝑙𝑙𝑠. )
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We study a 0D plasma where the electrons are 
initially at 5 eV and Maxwellian distribution

• The gas is at room temperature and the 
electrons will relax to their temperature

• Ionization process still occurs in the 
relaxation

• The Maxwellian distribution captures a 
much faster relaxation as compared to the 
kinetic solver.

High-moment closure for electrons 24

Figure 11. Evolution of the macroscopic variables during the relaxation

Case	1:	0D	relaxation	in	Argon	plasma	(comparison	to	kinetic	solver)

High-moment closure for electrons 26

Figure 13. EEDF after 1 µs of simulation for di↵erent pressures and plasma density.

balance equations to be negligible. Additionally, we account for the losses of charges

and electron energy at the wall, as explained in [1]. The ions and the gas are assumed to

be at constant temperatures, Tg = 0.026 eV and Ti = 0.1 eV. Under these assumptions,

the set of equations read
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Here uB =
p

eTe/mi, the loss energy at the wall in an argon plasma ↵w = 4.7, the

ion-gas collision frequency ⌫ig is computed with the model proposed by Benilov [56].

The losses at the wall are modelled with the factor from Lucken et al. [57],

h2D(Te) =
lyhl(lz, Te) + lzhl(ly, Te)

ly + lz
with hl(l, Te) = 0.55

✓
3 + 0.5
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�i
+ 0.2

Ti

Te

l

�i

◆� 1
2

,

(52)

• The resolution of the higher moment seems 
to  capture better the relaxation as compare 
to a model solving for a Maxwellian
distribution.

• The collisional coefficients depend on 
the shape of the EEDF (𝚫𝒆)

• We tried different conditions:

• 𝒏𝒆 = 𝟏𝟎𝟏𝟕, 𝟏𝟎𝟏𝟖	𝒎�𝟑

• 𝒑𝒈 = 𝟑, 	𝟑𝟎	𝒎𝑻𝒐𝒓𝒓

• The moment model captures the deviation 
of the EEDF from Maxwellian.



Case	2:	1D	simulation	of	an	ICP	reactor

20

We study a 1D slab along the axis of the ICP reactor 
working on argon.

The model has the following assumptions:

• Plasma is quasi-neutral.

• The plasma is assumed to be ambipolar in the x-
direction

• The gas is assumed to be at constant temperature.

• We assume a 2D edge-to-center plasma density 
ration as proposed by Lucken et al. (2018).

• We solve for the following variables:

• Plasma density
• Velocity in the x-direction 
• Electron temperature
• Electron heat-flux in the x-direction
• Fourth moment (electron kurtosis)

High-moment closure for electrons 17

4. 1D simulation of an ICP reactor: Comparison to experiments

In this section, we derive a 1D high-order moment quasi-neutral ambipolar model for

the simulation of an ICP reactor that will be compared to experimental results. The

experiments were carried out in an argon purely ICP source, symmetrically driven at

4 MHz. The experimental device as well as the experimental procedure is detailed by

Aanesland et al. [49]. In the present study, the device is studied without an imposed

magnetic field. A schematic of the ICP source is presented in Fig. 7. The system has

a cuboid geometry with a cross-section of 12 cm by 8 cm and 12 cm long (x-direction).

The distributions are measured in the center of the (8 ⇥ 12) rectangular section and

in di↵erent positions along the x-direction from x = 1.5 cm to x = 11.5 cm. The

gas is injected along x, ensuring no plasma expansion in the studied volume. In the

present work, we present measurements for two di↵erent powers, 100 and 200 W, and

two di↵erent pressures, 5 and 15 mTorr. In this paper, we will study the transport

of plasma along the x-direction and benchmark the ability of the high-order moments

system to capture deviations in the EEDF.
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Ane Aanesland, Jérôme Bredin, Valery Godyak and Pascal Chabert – App. Phys. Lett., 100, 044102 (2012)
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Figure 7. Schematic representation of the ICP source studied in this section (Adapted
from ?).

We reduce the 3D system to a one-dimensional slab along the x-direction. The

reduction to a 1D geometry is done by using the edge-to-center plasma density ratio in

2D discharges proposed by Lucken et al. [50]. We propose a model with the following

assumptions

- The plasma is composed by one population of singly charged Ar+ ions that follow

a Maxwellian distribution function with a temperature that is constant across the

discharge such that Te � Ti.

- The plasma is quasineutral, ni = ne = n.

- No current is drawn from the discharge such that uix = uex = u.

- The neutral gas is composed by Ar and has uniform density and temperature.

Therefore, the gas heating is neglected and the gas temperature is assumed to be

Tg = 300 K.



Case	2:	0D	relaxation	in	an	Argon	(comparison	to	kinetic	solver)
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We study a 1D slab along the axis of the ICP reactor 
working on argon.

The model has the following assumptions:

• Plasma is quasi-neutral.

• The plasma is assumed to be ambipolar in the x-
direction

• The gas is assumed to be at constant temperature.

• We assume a 2D edge-to-center plasma density 
ration as proposed by Lucken et al. (2018).

• We solve for the following variables:

• Plasma density
• Velocity in the x-direction 
• Electron temperature
• Electron heat-flux in the x-direction
• Fourth moment (electron kurtosis)
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We study a 1D slab along the axis of the ICP reactor 
working on argon.

The model has the following assumptions:

• Plasma is quasi-neutral.

• The plasma is assumed to be ambipolar in the x-
direction

• The gas is assumed to be at constant temperature.

• We assume a 2D edge-to-center plasma density 
ration as proposed by Lucken et al. (2018).

• We solve for the following variables:

• Plasma density
• Velocity in the x-direction 
• Electron temperature
• Electron heat-flux in the x-direction
• Fourth moment (electron kurtosis)

High-moment closure for electrons 22

Figure 8. Comparison of 1D moment model with experiments at pg = 15 mTorr and
Pabs = 200 W.

interestingly, the EEDF that are reconstructed with the fourth moment also resemble

quantitatively to these measure in the experiments. The results at pg = 5 mTorr using

the moment model improve the results of the Maxwellian model. However they compare

worse than the higher pressure. This mismatch can be due to di↵erent reasons, such

as the heating of the gas and local transport that cannot be reduced to a 1D model.

Nevertheless, the comparison of the computed EEDF with the experimental ones is also

promising, particular in regions not influenced by the RF field.



Case	2:	0D	relaxation	in	an	Argon	(comparison	to	kinetic	solver)
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We study a 1D slab along the axis of the ICP reactor 
working on argon.

The model has the following assumptions:

• Plasma is quasi-neutral.

• The plasma is assumed to be ambipolar in the x-
direction

• The gas is assumed to be at constant temperature.

• We assume a 2D edge-to-center plasma density 
ration as proposed by Lucken et al. (2018).

• We solve for the following variables:

• Plasma density
• Velocity in the x-direction 
• Electron temperature
• Electron heat-flux in the x-direction
• Fourth moment (electron kurtosis)
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Figure 9. Comparison of 1D moment model with experiments at pg = 15 mTorr and
Pabs = 100 W.

Figure 10. Comparison of 1D moment model with experiments at pg = 5 mTorr and
Pabs = 100 W.
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We study a 1D slab along the axis of the ICP reactor 
working on argon.

The model has the following assumptions:

• Plasma is quasi-neutral.

• The plasma is assumed to be ambipolar in the x-
direction

• The gas is assumed to be at constant temperature.

• We assume a 2D edge-to-center plasma density 
ration as proposed by Lucken et al. (2018).

• We solve for the following variables:

• Plasma density
• Velocity in the x-direction 
• Electron temperature
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Figure 9. Comparison of 1D moment model with experiments at pg = 15 mTorr and
Pabs = 100 W.

Figure 10. Comparison of 1D moment model with experiments at pg = 5 mTorr and
Pabs = 100 W.



Intermediate	ideas	to	take	with	you
1. The model seems to capture the EEDF as measured in experiments and simulated by kinetic solvers

2. The model is very efficient as the transport coefficients are parametrized with the local excess kurtosis.

3. The 1D reduction seems to provide interesting results, particularly in the comparison of the EEDF.
However, the reduction of the dimensionality adds additional simplifications.

14
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Non	quasi-neutral	model:	ICP	Discharge	at	low-pressure

AP scheme for the low-temperature plasma fluid equations A. Alvarez Laguna et al.

when they strike the wall. Since the thermal motion of electrons is larger than that of ions, the
surface will charge negatively with respect to the plasma (in electropositive plasmas), forming a
charged boundary layer called the plasma sheath.

The analytical models for the sheath and presheath rely on the isothermal multi-fluid equations
[67], while assuming the inertia of electrons and temperature of ions to be negligible. Nevertheless,
important kinetic phenomena taking place are not included in this model [68].

Let us consider a 1D domain of length l filled with a plasma between two floating walls, with
no secondary electron emission, the distribution function of electrons is a Maxwellian and all the
electrons that touch the wall are absorbed by the wall. With these assumptions, the flux of electrons
collected by the wall (see, e.g., [1]) both in dimensional and dimensionless units read:

Dimensional: neue|wall = ne

r
kBTe

2⇡me
and dimensionless: n̄eūe|wall =

n̄e
p
2⇡"

. (11)

A steady solution is found when the ionization inside the bulk of the plasma balances the particle
loss as follows

2neue|wall =

Z l

0

ne⌫
izdx. (12)

As mentioned by Riemann [37], the ionization frequency is an eigenvalue of the problem. Conse-
quently, there is only one ionization frequency that finds a steady state solution for a given distance
between plates. In this paper, we propose a numerical methodology that proves to be convergent
to find this eigenvalue.

With the previous assumptions, the potential at the pre-sheath �p and the wall �W , in dimen-
sional units [69], as follows

�p = �
kBTe

2e
and �W =

kBTe

e
ln

✓
me

2⇡mi

◆1/2

, (13)

where �p is the potential drop needed to accelerate the ions to Bohm’s speed (neglecting the ion
pressure gradient) and �W is the potential drop in the sheath. In Fig. 2, we illustrate the steady
state solution of a bounded plasma between two floating plates.

Figure 2: Solution of a plasma between two floating walls with a fluid model. The proposed numerical

set-up is able to captures the physics as predicted by the theory [37].

3. Standard upwind finite volume discretization

We present a standard discretization of the system (2) in order to illustrate the associated numer-
ical di�culties. An example of a simulation of a low-temperature discharge with this discretization

10

5	𝑐𝑚

Absorbing	walls

𝐸?E(13.56	𝑀𝐻𝑧)

We study a 1D ICP Xenon discharge:

• 𝐩𝐠𝐚𝐬~𝟑	𝒎𝑻𝒐𝒓𝒓	
• 𝐧𝐞~𝟏𝟎𝟏𝟓𝒎𝟑

• 4 excitation collisions + single ionization + elastic + backscattering

We consider a model solving for:
• 5 moments for electrons
• 3 moments for ions
• Poisson equation

Plasma discharge 3

In elastic collisions of the type, ↵+g ! ↵+g, the collision conserves the momentum

and the energy, as follows,

m↵~v↵ +mg~vg = m↵~v
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Alternatively, in an inelastic collision of the type ↵+� ! �+ �, some of the energy can

be used to form the products, as follows,
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These relations will be used after to derive the collisional integrals of the moment closure.

We define the scattering cross section as the integral of the di↵erential cross-section

over the scattering angle

� = 2⇡

Z ⇡

0

I sin ✓d✓. (10)

We define the momentum transfer cross section as

Q(1) = 2⇡

Z ⇡

0

(1� cos ✓)I sin ✓d✓. (11)

2.1.2. Case: Xenon discharge In this work, we will consider a simple case with a noble

gas with the following collisional processes: electron-atom ionization, excitation, and

elastic scattering; and ion-atom elastic scattering and resonant charge exchange. The

collisional processes are summarized in Table 1

Reaction Process Thresh. [eV] Ref

Electron impact Xe

e + Xe ! e + Xe Elastic 0 REF

e + Xe ! e + Xe⇤ (8.315 eV) Excitation 8.315 eV REF

e + Xe ! e + Xe⇤ (9.447 eV) Excitation 9.477 eV REF

e + Xe ! e + Xe⇤ (9.917 eV) Excitation 9.917 eV REF

e + Xe ! e + Xe⇤ (11.7 eV) Excitation 11.7 eV REF

e + Xe ! Xe+ + 2e Elec. impact ioniz. 12.13 eV REF

Scattering of ions

Xe+ + Xe ! Xe+ + Xe Elastic 0 Langevin

Xe+ + Xe ! Xe + Xe+ Charge exch. 0 REF

Table 1. Collisional processes in Xenon

The scattering cross-sections for the Xenon are shown in Fig. 10.

Table : Collisional processes

Plasma discharge 4

Figure 1. Scattering cross sections for xenon

2.2. Moment closure equations

2.2.1. General moment equations We define the moments of the distribution function

of the species ↵ 2 {+, e} as the weighted average over the velocity space, as follows,

M↵(~x, t) =

Z

1
V↵f↵d

3v = hV↵f↵i , (12)

We define the brackets h·i as the average over the velocity space. The weights used for

the average are monomials of the velocity, as follows,
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◆T

, (13)

Note that the indices i, j, k use the common Einstein tensorial notation.

With these definitions, the evolution equation for the moments quantities are

obtained by averaging the kinetic equation with the previously defined weights.

Consequently, the general form of the moment equations reads,
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By abuse of notation, in the following, we will drop the subscript ↵ as the equations for

both electrons and ions have the same structure. We can write the system of moment

equations in compact form as

@

@t
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@

@xj
Fj = SE +C. (15)

By using the weights of Eq. (36), the general set of equations reads
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Comparison	electrons	(5eqs)	+	ions	(3	eqs)	and	PIC

Model

Electrons:

• Mass
• Momentum	(with	inertia)
• Energy
• Heat	Flux
• 4th-moment

Ions:

• Mass
• Momentum
• Energy

Poisson	Eq.

Collisions	follow
Benilov (1998)

32



Comparison	electrons	(5eqs)	+	ions	(3	eqs)	and	PIC

Comparison

• Density	is	closer

• Temperature	drops	at	the	
seath

• Ion	temperature	is	well	
captured

• Flux	at	the	wall	is	
overestimated

• The	potential	drop	is	
identical

Converged solution
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Perspectives:	extension	to	multi-dimensions
1. An isothermal moment model (including electron inertia) is implemented in a 2D code for magnetized 

discharges. The set of equations allows for representing instabilities and  situations with non-ambipolar
diffusion. 

Work of Louis Reboul’s PhD thesis.
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Isothermal	non-magnetized	case
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Fluid PIC

Electron	density	𝑛;

1D	horizontal	cut

Work of Louis Reboul’s PhD thesis.



Isothermal	non-magnetized	case

36

Fluid PIC

Electron	flux	𝑛;𝑢;

Fluid PIC

Electron	flux	𝑛/𝑢/

1D	horizontal	cut

Work of Louis Reboul’s PhD thesis.



Summary	and	conclusions
1. The model seems promising for capturing the non-equilibrium processes under the conditions of interest 

of ICP discharges (high-density plasmas in large systems)

2. The comparison with PIC is also promising and shows the improvement due to the fourth moment

3. The model would help to study 2D/3D effects that might be important  (especially in the presence of a 
magnetic field)

4. Paper with derivation of the model and comparison to experiments in preparation.
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