

e

Electron Impact Collision Cross-sections and the Quantemol database

Jonathan Tennyson
University College
London

Outer region

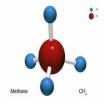
Inner region

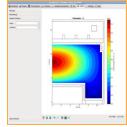
International Online Plasma Seminar (IOPS) Oct 2021

About the Quantmol

Quantemol was founded in 2004 as a University College London spin-off providing user friendly interfaces for sophisticated academic codes. Company has expended to providing scientific consultancy services and in 2016 launched the QDB database. Has 3 main products:

2019




2013

2016

Quantum chemistry code based software to provide reaction rates

UKRmol+

Plasma modelling software to model plasma behaviour Hybrid Equipment Plasma Model

Plasma chemistry database

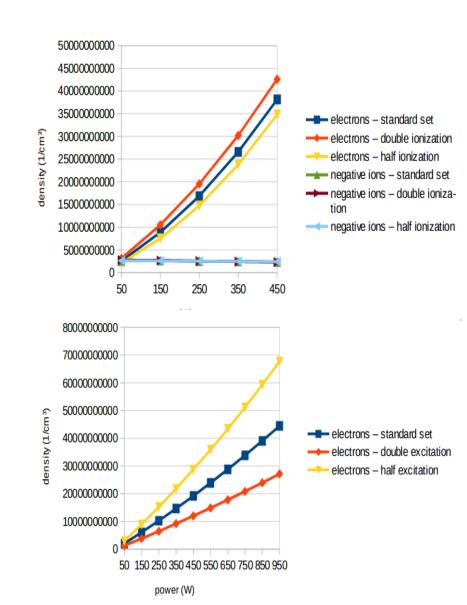
Contents

- 1. Databases: QDB etc
- 2. Electron collision applications: process + calculations

Fusion plasmas: BeH, H₂

Technological plasmas

Atmospheric: space craft re-entry


3. Future directions: photons

Plasma Modelling and Reaction data

A plasma model consists of two parts:

- Physical model describing the particle motion
- 2. Chemical model which provides data for the physical model in the form of collision rates (ionization sources, collision frequency, diffusion coefficient).

Accuracy of the physical model depends strongly on the accuracy of the chemical model.

Which data are needed?

Gas Phase:

- Electron heavy particle collisions: elastic, excitation, ionization, dissociation, attachment, recombination. Preferably as cross-sections, though some codes exclusively use rate coefficients.
- Heavy particle collisions: charge exchange, ion-ion recombination, chemical reactions, Penning ionization etc. Almost exclusively as rate coefficients

Classifications mainly important to correctly calculate energy losses/transfer. For databases, classification allows search for specific reactions.

Active databases providing electron – molecule collision data

Electron-collision data

Other data included

Astrophysics

BASECOL Rotational excitation Heavy particle inelastic cross sections

KIDA Dissociative recombination Reaction rates

UDfA Dissociative recombination Reaction rates

Fusion

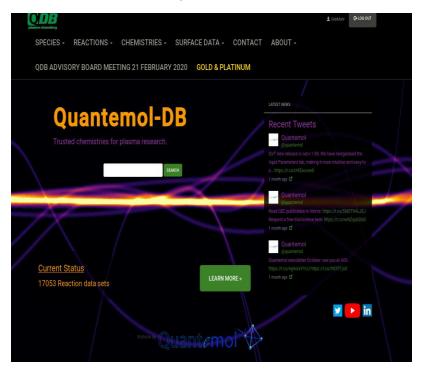
NIFS Excitation processes Reactions rates

NFRI Excitation processes Reactions rates

ALADDIN Excitation processes Reactions rates

Atmospheric re-entry

Phys4Entry Vibrational excitation Heavy particle inelastic cross sections

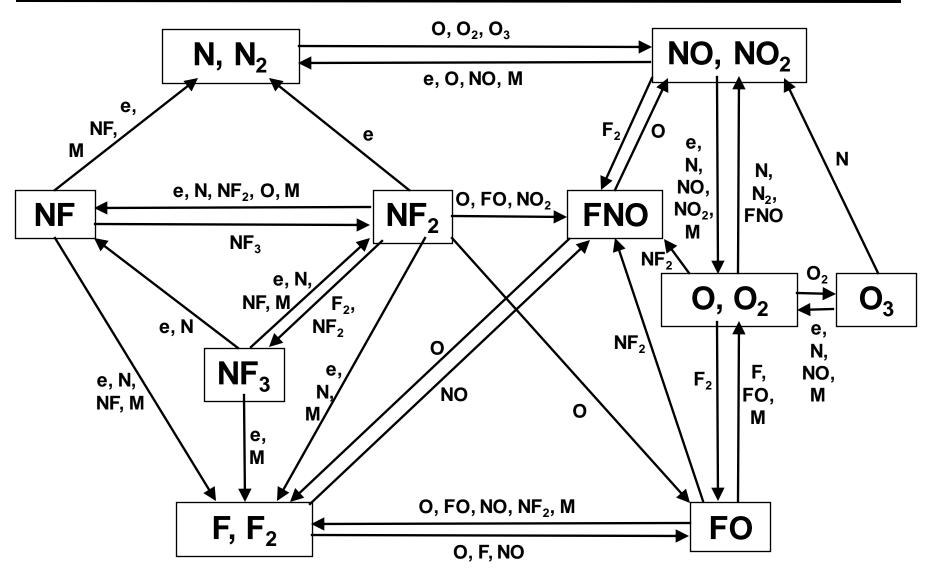

Plasma physics

LXCat Excitation processes Atomic cross sections

Technological plasmas

QDB Excitation processes+ Reaction rates

QDB: A species and reactions database for plasma applications aimed, mostly, at low-temperature plasmas



J. Tennyson et al, QDB: a new database of plasma chemistries and reactions, *Plasma Sources Sci. Technol.*, **26**, 055014 (2017). 5000 reactions, 29 complete chemistry sets

2021 release being finalised

30000 reactions, 38 complete chemistry sets + new functionality

REACTION MECHANISM: NF₃/O₂

M represents 3rd body. Diagram ignores ions which are also important.

QDB species - Data Model

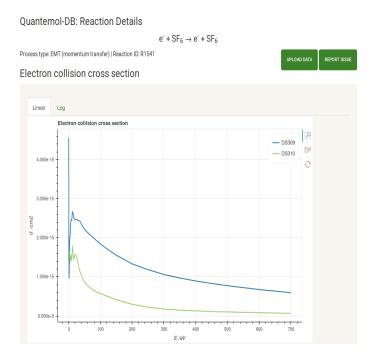
Fundamental species Object RP:

- Chemical formula (without states), i.e. CF4, Ar+, O-
- Mass
- Charge
- Thermodynamic properties
- States

State Object RP:

- Name (string)
- State type

State objects are connected to the RP objects. An RP can have multiple states and the same state can be attached to multiple RPs.


QDB states - Available states

State	Denomination
Atomic electronic excitation	Electronic Configuration: 1s2,1s2.2s2.2p6 Atomic Term Symbols: 3P, 3P _{1/2}
Molecular electronic excitation	Molecular Term Symbols: 3П,X(3П)
Rotational States	Total Rotational Quantum Number: J=0,J=3/2
Diatomic Vibrational States	Vibrational Quantum Number: v=0, v=1
Polyatomic Vibrational States	Normal Mode Formulation: v1, v1+v4, 3v2+v3
Generic/Pooled States	*,**,V=*,J=*

QDB - Reaction model

Reaction object stores:

- Reactants and Products (RPs)
- Type of reaction

ReactionDataSet object stores:

- Associated reaction
- Type: Cross section or coefficient
- Reference
- Energy-dependent cross section or
- Rate coefficient parameters A,n,E
- Uncertainties in cross section or rate coefficient parameters

Each dataset can only be attached to one reaction!

QDB - Chemistry Set Model

QDB provides pre-assembled chemistry sets for commonly used gas mixtures.

The chemistry object stores:

- The datasets used (not reactions)
- Child reactions to replace parent reactions
- Feed Gases

Other properties such as species are not stored but derived from the used datasets.

Rating	ID	Mixture	Reactions
****	C3	N ₂ /H ₂ chemistry	138
**** *	C4	Ar/H ₂ chemistry	64
*** *	C5	O ₂ /H ₂ chemistry	115
*** *	C6	SF ₆ /O ₂ chemistry	147
****	C7	CF ₄ /O ₂ chemistry	169
**** *	C8	SF ₆ chemistry	57
****	C9	CF ₄ chemistry	79
**** *	C10	CF ₄ /O ₂ /H ₂ /N ₂ chemistry	299
****	C11	C ₄ F ₈ chemistry	144
*** \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C13	SiH ₄ chemistry	62
****	C14	SiH ₄ /NH ₃ chemistry	81
**** *	C15	Ar/O ₂ chemistry	51
★★★☆☆	C16	Ar/O ₂ /C ₄ F ₈ chemistry	342
****	C17	SiH ₄ /Ar/O ₂ chemistry	178
<u></u> ★★☆☆☆	C18	Ar/Cu chemistry	26
★★★☆☆	C19	Cl ₂ /O ₂ /Ar chemistry	65
★★★☆☆	C20	Ar/BCl ₃ /Cl ₂ chemistry	59
★★★☆☆	C21	Ar/NH ₃ chemistry	157
★★★☆☆	C22	CH ₄ /H ₂ chemistry	179
$^{\star \star}$ ሴሴሴ	C23	C ₂ H ₂ /H ₂ chemistry	80
***	C24	CH ₄ /NH ₃ chemistry	262
$\star\star$	C25	C ₂ H ₂ /NH ₃ chemistry	169
***	C26	He/O ₂ chemistry	83
****	C27	CF ₄ /CHF ₃ /H ₂ /Cl ₂ /O ₂ /HBr chemistry	568
****	C28	CH ₄ /N ₂ chemistry	536
****	C29	SF ₆ / CF ₄ / O ₂ chemistry	293
****	C30	Ar/Cu/He chemistry	24
★★★☆☆	C31	Ar/NF ₃ chemistry	93
****	C32	SF ₆ /CF ₄ /N ₂ /H ₂ chemistry	187
****	C33	Ar/NF ₃ /O ₂ chemistry	310
★★★☆☆	C35	C ₂ F ₆ / SiO ₂ (s) plasma etch	9
*** **	C36	$CF_4 / SiO_2(s)$	66
****	C37	He chemistry	16
****	C38	O ₂ chemistry	50
****	C39	Ar chemistry	18
★★★☆☆	C40	N ₂ chemistry	27
****	C41	H ₂ chemistry	27
****	C42	Reduced CF ₄ /O ₂ /N ₂ /H ₂ Chemistry (1 - 30 mTorr)	83

QDB - Surface data - Coefficients

Sticking and return coefficients are used in plasma simulations to calculate particle losses and gains at surfaces. Example:

Oxygen atoms have (hypothetically) a sticking coefficient of 0.5 and return coefficient for O_2 of 0.1. Hence, half of the oxygen atoms hitting the surface will be lost and 10% will return as O_2 .

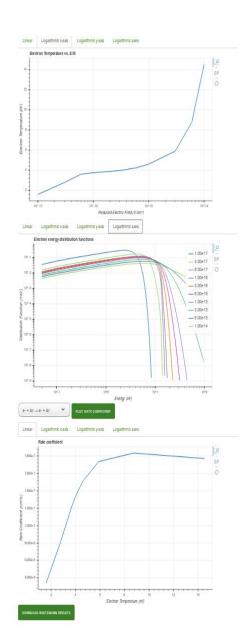
Species	Surface	Formula	Parameters	Comment
О	Steel	р	p=1.0	Clean Surface
0	Steel	р	p=0.1	Saturated Surface

QDB - Surface data - Combined mechanisms

For complex surface reaction such as chemical etches, only sets of reactions have all the necessary information, i.e. the individual reactions on their own are stored in the database but only shown to the user in the context of a full set. The reactions itself are objects similar to surface reactions connected to reactants and products (gas phase and surface separately) and the coefficient parameters.

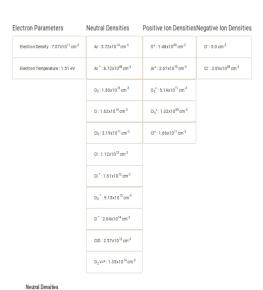
Reaction	Formula	Parameters	Comment
F + Si_S →SiF_S	р	p=1.0	Implies activation by ions
$F + SiF_S \rightarrow SiF_2 S$	р	p=0.1	Implies activation by ions
$F + SiF_2_S \rightarrow SiF_3_S$	р	p=0.1	Implies activation by ions
$F + SiF_3_S \rightarrow SiF_4 (+ Si_S)$	р	p=0.2	Implies activation by ions
$F^+ + SiF_2_S \rightarrow SiF_2 + F (+ Si_S)$	$p_0(\sqrt{E}-\sqrt{E_{th}})$	p=0.1, E _{th} = 5 eV	-

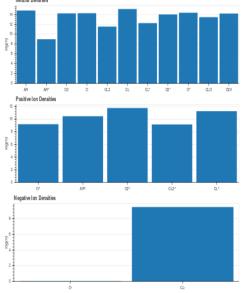
QDB - Services


Sebastian Mohr Quantemol

- Reaction sets
- Downloads of chemistry sets in ready to use format for commonly used software packages.
- A Dynamic Chemistry generator to assemble bespoke chemistry sets from reactions available on QDB.
- A Boltzmann-Solver to calculate rate coefficients for non-Maxwellian EEDFs.
- A 0D Model to calculate reactor-averaged particle densities.
- Chemistry Reduction service to optimize a set for specific process parameters, see:
- M. Hanicinec, S. Mohr and J. Tennyson, Fast species ranking for iterative species-targeted skeletal reduction of reaction sets, *Plasma Sources Sci. Tech.*, **29**, 125024 (2020)

QDB - Boltzmann - Solver


As the electron energy distribution function in a plasma is often non-Maxwellian, the rate coefficients need to be calculated for these. QDB has an online Boltzmann-Solver to calculate EEDFs and corresponding rate coefficients.


Defining relative densities of heavy particles and the gas temperature, it yields the EEDFs, electron temperature as function of the reduced electric field, and rate coefficients as function of temperature or reduced electric field.

QDB - 0D Model

QDB has an online global model which calculates particle densities and electron temperature for given process parameters such as pressure, power, and gas flows.

Low-energy electron collision processes

$$AB + e \longrightarrow AB + e$$

Rotational excitation

$$AB(N'') + e \longrightarrow AB(N') + e$$

Vibrational excitation

$$AB(v"=0) + e \longrightarrow AB(v') + e$$

Dissociative recombination/Dissociative attachment

$$AB + e$$
 $A + B$

$$A + B$$

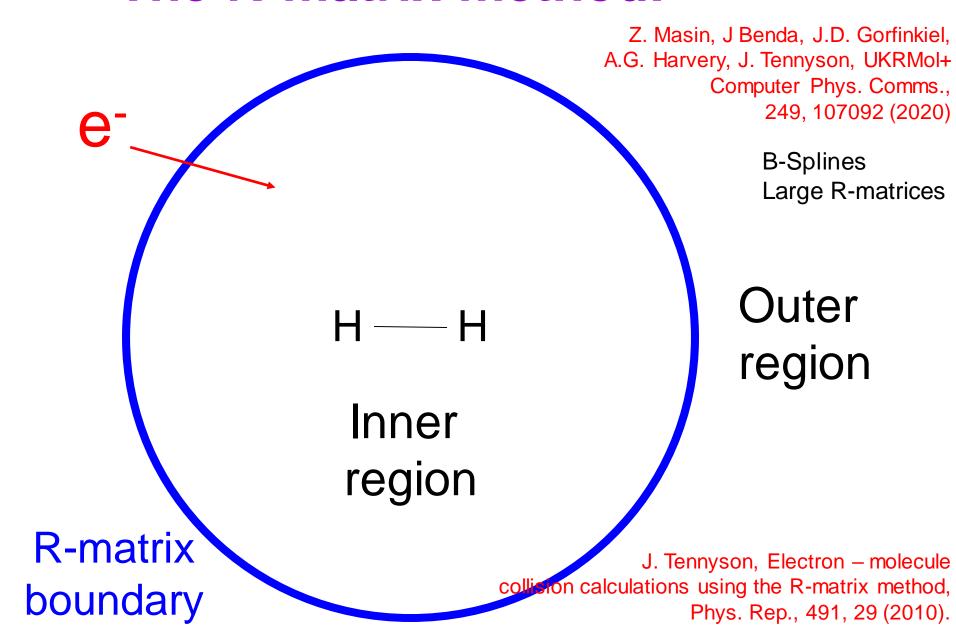
Electronic excitation

Impact dissociation

$$AB + e \longrightarrow A + B + e$$

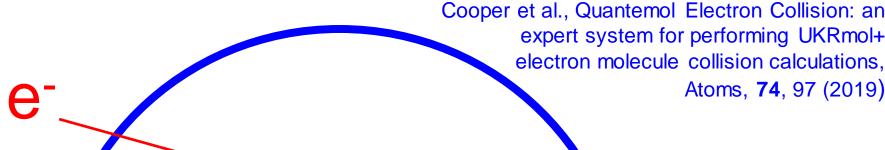
Impact ionisation (e,2e)

$$AB + e \longrightarrow AB^+ + e + e$$


Energy

Electron-molecule collisions – Why theory?

- Need for complete datasets
- Experiment slow and expensive: best for benchmarking
- (Almost) impossible to study radicals experimentally
- (Almost) impossible to study excited states experimentally


K. Bartschat and M.J. Kushner, Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology, Proc. Nat. Acad. Sci., **113**, 7026 (2016).

The R-matrix method: UKRmol+

The R-matrix method: (E)

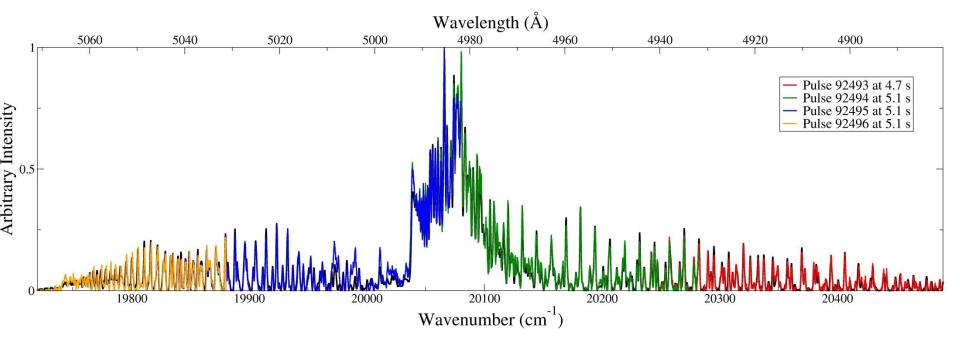
Outer region

Inner region

R-matrix boundary

J. Tennyson, Electron – molecule collision calculations using the R-matrix method, Phys. Rep., 491, 29 (2010).

Fusion appications: BeH / BeD / BeT

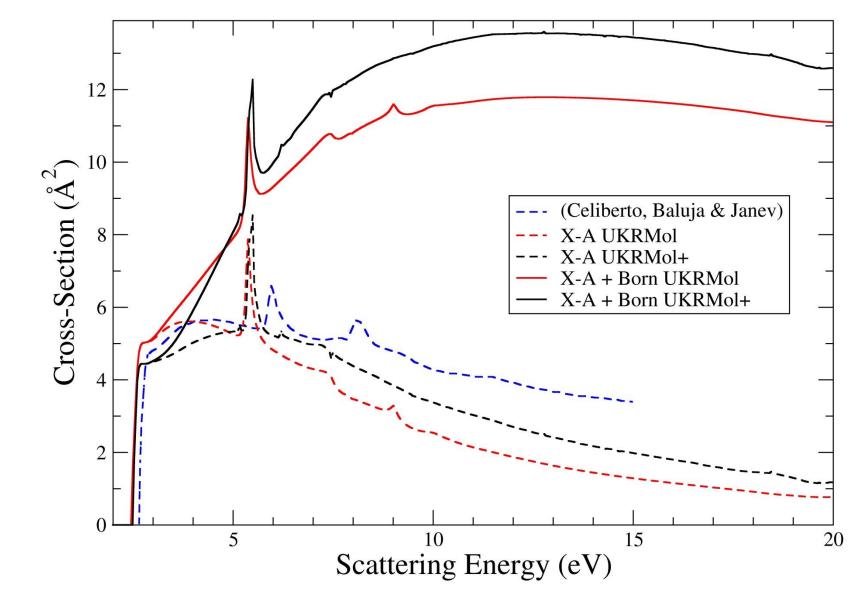

- Be coating of walls at JET (ITER)
- BeD observed product
- Monitor Be erosion

Daniel Darby-Lewis

In collaboration with Kerry Lawson (CCFE)

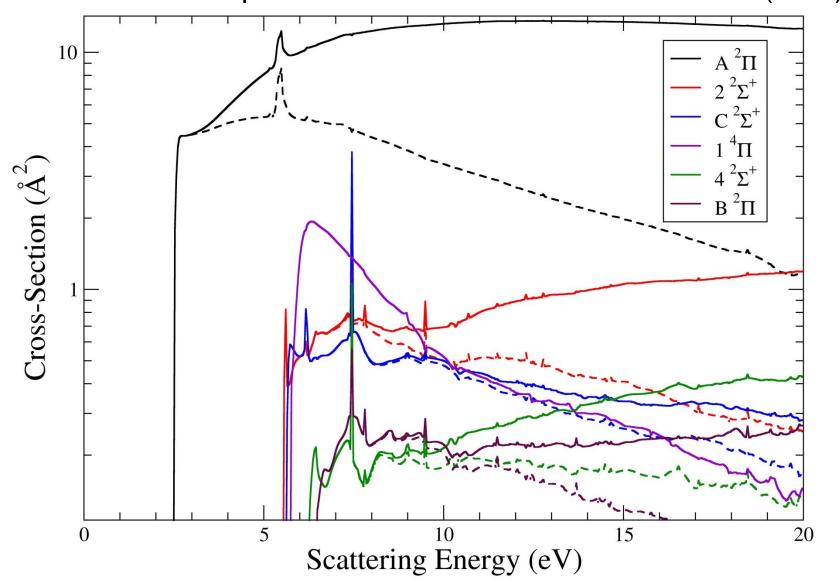
BeD spectra measured in JET

Red, green, blue and orange regions are different pulses.

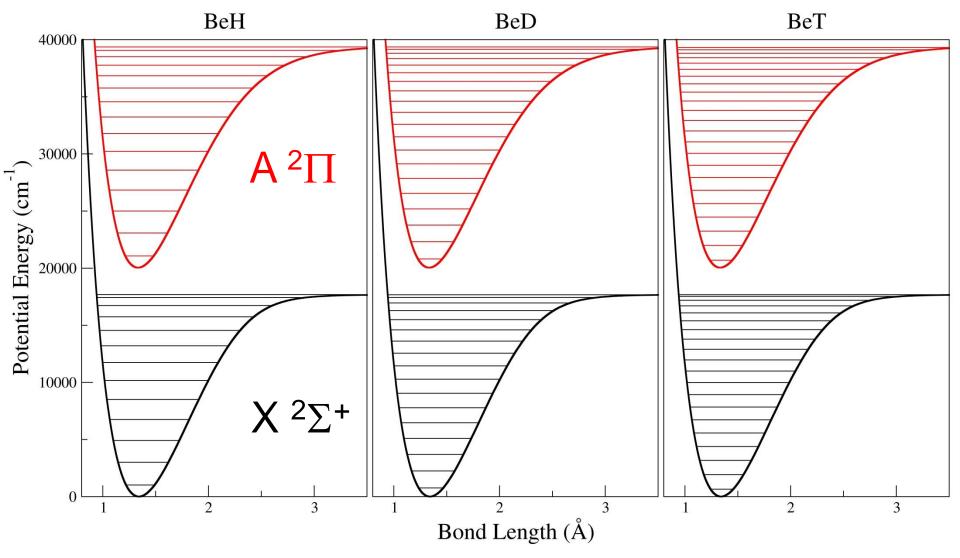

D. Darby-Lewis, J. Tennyson, K.D. Lawson, S.N. Yurchenko, M.F. Stamp, A. Shaw, S. Brezinsek and JET Contributor, Synthetic spectra of BeH, BeD and BeT for emission modelling in JET plasmas, *J. Phys. B: At. Mol. Opt. Phys.*, 51, 185701 (2018)

Interpretation requires collisional-radiative model

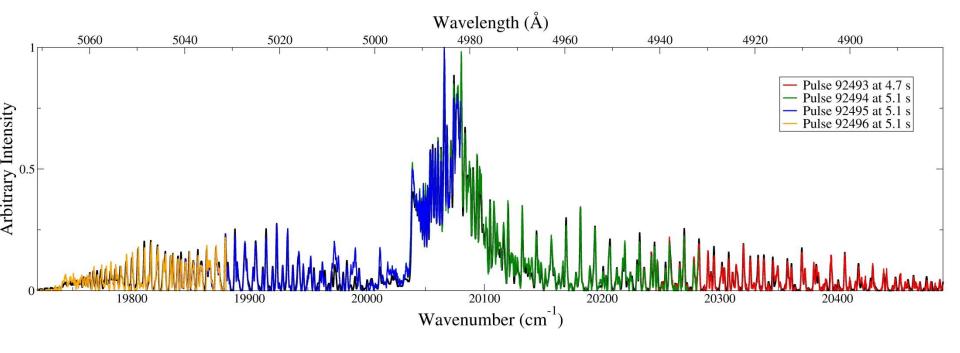
Step 1 e + BeH (X
$$^2\Sigma^+$$
) \rightarrow e + BeH (A $^2\Pi$)


Step 2 BeH (A $^2\Pi$, v',J') \rightarrow BeH (X $^2\Sigma^+$,v'',J'') + hv

e + BeH (X ${}^2\Sigma^+$) \rightarrow e + BeH (A ${}^2\Pi$)


D. Darby-Lewis, Z. Masin & J. Tennyson, J. Phys. B: At. Mol. Opt. Phys, 50, 175201 (2017).

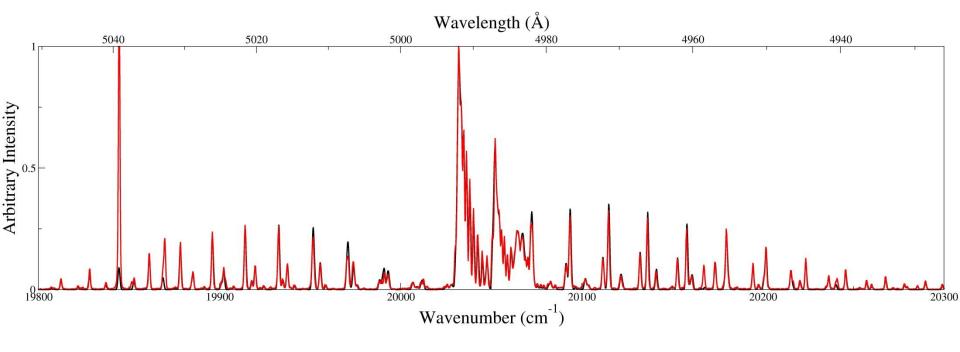
Electron impact electronic excitation of the BeH (BeD)


D. Darby-Lewis, Z. Masin & J. Tennyson, *J. Phys. B: At. Mol. Opt. Phys*, **50**, 175201 (2017).

Spectroscopic model for BeH/BeD/BeT

D. Darby-Lewis, J. Tennyson, K.D. Lawson, S.N. Yurchenko, M.F. Stamp, A. Shaw, S. Brezinsek and JET Contributor, Synthetic spectra of BeH, BeD and BeT for emission modelling in JET plasmas, *J. Phys. B: At. Mol. Opt. Phys.*, **51**, 185701 (2018)

BeD spectra measured in JET



Red, green, blue and orange regions are different pulses.

Spectral fit: black lines. Gives: $T_{rot} = 3800 \text{ K}$, $T_{vib} = 4700 \text{ K}$

D. Darby-Lewis, J. Tennyson, K.D. Lawson, S.N. Yurchenko, M.F. Stamp, A. Shaw, S. Brezinsek and JET Contributor, Synthetic spectra of BeH, BeD and BeT for emission modelling in JET plasmas, *J. Phys. B: At. Mol. Opt. Phys.*, 51, 185701 (2018)

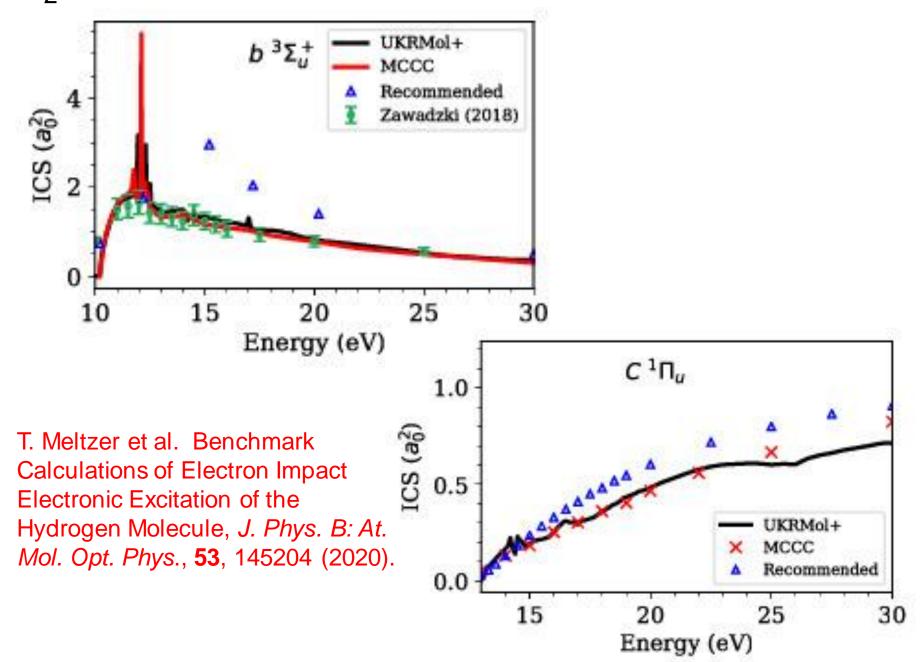
BeH spectra measured in Julich

Spectrum from a H doped lamp with a Be target: Measured red. Black synthetic generated at T_{rot} = 540 K and T_{vib} = 3440 K

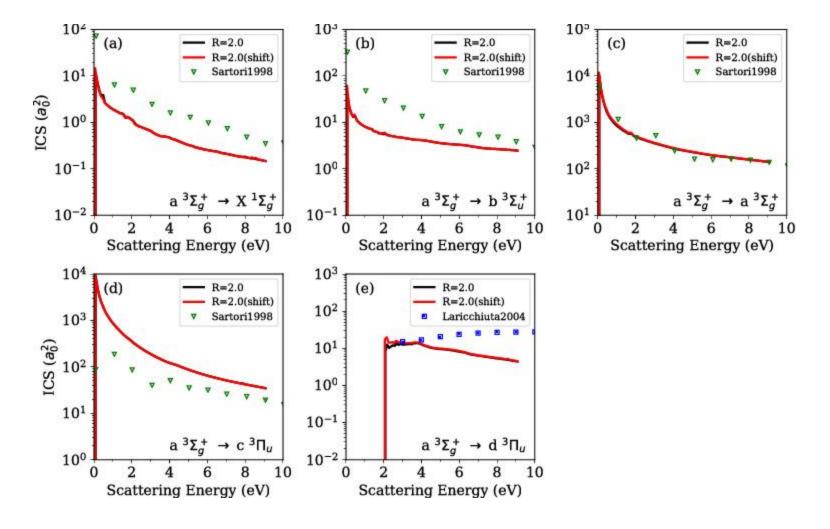
Interpretation requires collisional-radiative model

Step 1 e + BeH (X
$$^2\Sigma^+, v', J'$$
) \rightarrow e + BeH (A $^2\Pi, v'', J''$)

Step 2 BeH (A
$${}^2\Pi$$
, v' , J') \rightarrow BeH (X ${}^2\Sigma^+$, v'' , J'') + hv


Fusion appications?: H₂/ D₂ /T₂ etc

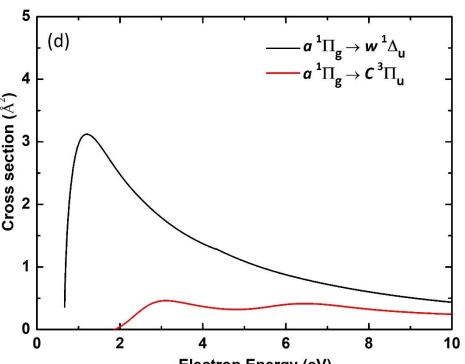
- New UKRmol+ allows study of diffuse targets
- •Considering collisions going up H(n=3) states
- •R-matrix sphere with a = 100 a.u.!
- Consider collisions from excited states

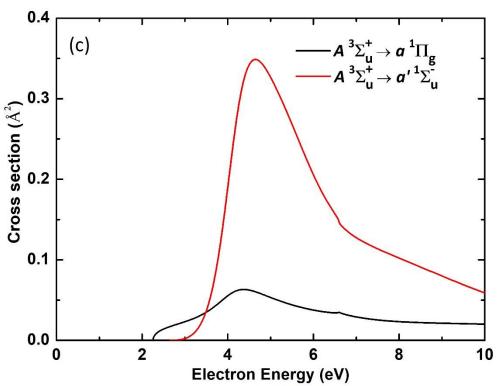


Tom Meltzer

H₂ electronic excitation cross sections from X state

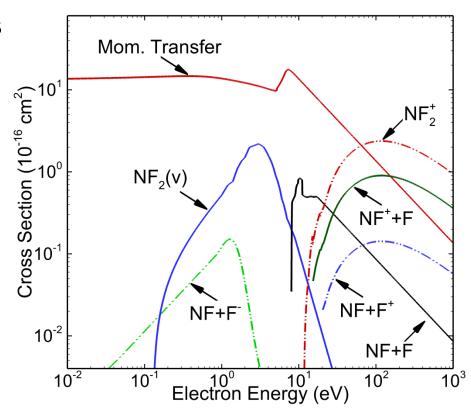
H₂ electronic excitation from excited states




T. Meltzer and J. Tennyson, Electron Collisions with Molecular Hydrogen from Electronically Excited States Using the R-matrix Method, *J. Phys. B: At. Mol. Opt. Phys.*, **53**, 245203 (2020).

N₂ electronic excitation from excited states

He Su



He Su, X. Cheng, H. Zhang & J. Tennyson, J. Phys. B: At. Mol. Opt. Phys., 54, 115203 (2021)

ELECTRON IMPACT NF_x CROSS SECTIONS

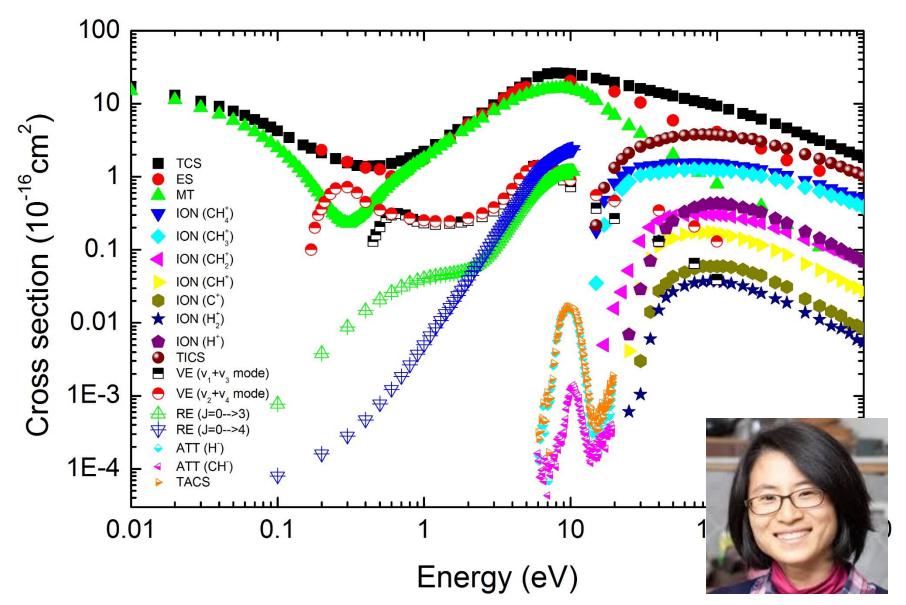
- Electron impact cross sections for NF_x not well known.
- Few direct measurements of NF₃ cross sections – mostly derived from swarm data.
- No direct (or swarm) measurements for NF₂, NF.
- Ab initio R-matrix method used to computationally generate self-consistent set of electron impact cross sections for NF₃, NF₂, NF.

NF₂ cross sections obtained using R-matrix method.

James Hamilton

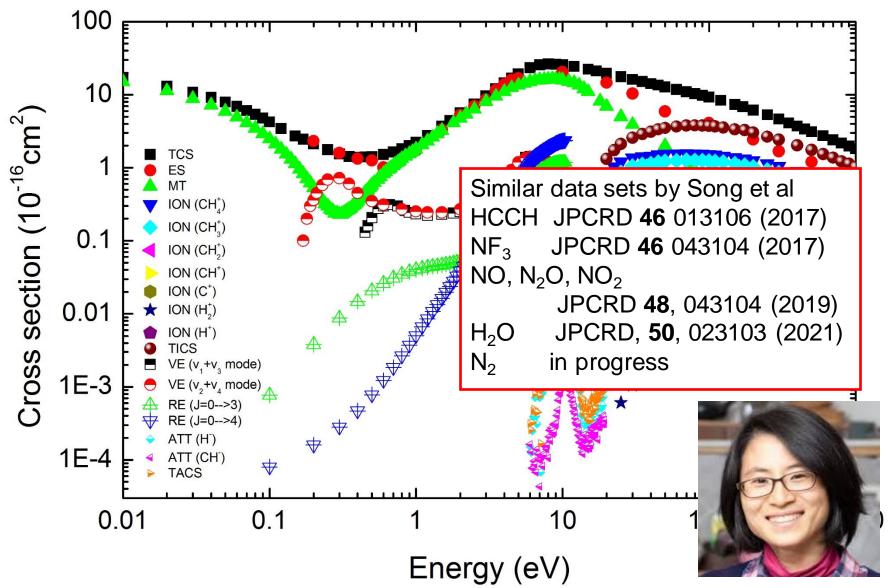
J.R. Hamilton, J. Tennyson, S. Huang and M.J. Kushner, Calculated cross sections for electron collisions with NF₃, NF₂ and NF, Plasma Sources Sci. Technol, 26, 065010 (2017).

Plasma chemistries:


Driven by a whole variety of e – molecules
Heavy particle reactions

Eg NF₃/O₂ mixture

S. Huang, V. Volynets, J.R. Hamilton, S. Lee, I.-C. Song, S. Lu, J. Tennyson & M.J. Kushner, Insights to Scaling Remote Plasma Sources Sustained in NF₃ Mixtures, *J. Vac. Sci. Technol. A*, **35**, 031302 (2017)

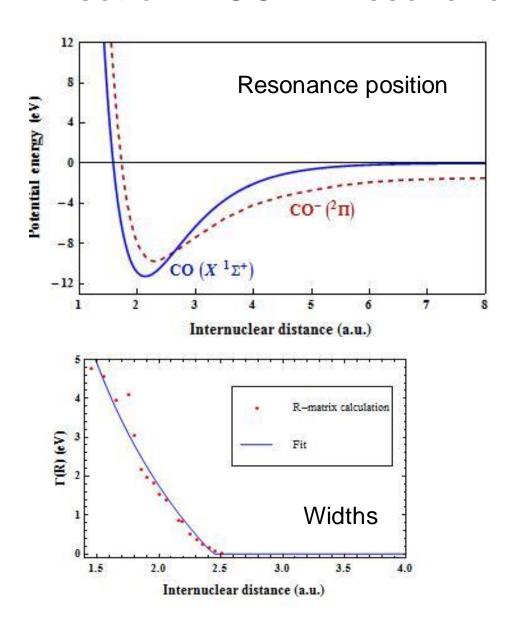

<u>Process</u>	Rate Coefficient ^{b)}	Reference	$\frac{\Delta H}{(eV)^{b)}}$
Electron Impact NF _x			
$e + NF_3 \rightarrow NF_3 + e$	c)	[17]	d)
$e + NF_3 \rightarrow NF_2 + F$	c), e)	[17]	-1.0
$e + NF_3 \rightarrow NF_3(v) + e$	c), f)	[17]	
$e + NF_3 \rightarrow NF_2 + F + e$	c)	[17]	-5.8
$e + NF_3 \rightarrow NF + F + F + e$	c)	[17]	-6.1
$e + NF_3 \rightarrow NF_3^+ + e + e$	c)	[17]	
$e + NF_3 \rightarrow NF_2^+ + F + e + e$	c)	[17]	-0.5
$e + NF_3 \rightarrow NF^+ + F + F + e + e$	c)	[17]	-4.2
$e + NF_3 \rightarrow F^+ + NF_2 + e + e$	c)	[17]	-1.1 ^{g)}
$e + NF_2 \rightarrow NF_2 + e$	c)	[18]	
$e + NF_2 \rightarrow NF + F$	c)	[18]	-0.5
$e + NF_2 \rightarrow NF_2(v) + e$	c), f)	[18]	
$e + NF_2 \rightarrow NF + F + e$	c)	[18]	-5.1
$e + NF_2 \rightarrow NF_2^+ + e + e$	c)	[18]	
$e + NF_2 \rightarrow NF^+ + F + e + e$	c)	[18]	
$e + NF_2 \rightarrow F^+ + NF + e + e$	c)	[18]	
$e + NF \rightarrow NF + e$	c)	[18]	
$e + NF \rightarrow N + F$	c)	[18]	-0.6
$e + NF \rightarrow NF(v) + e$	c), f)	[18]	
$e + NF \rightarrow NF(^{1}\Delta) + e$	c), f)	[18]	
$e + NF \rightarrow NF(^{1}\Sigma^{+}) + e$	c), f)	[18]	
$e + NF \rightarrow N + F + e$	c)	[18]	-4.0
$e + NF \rightarrow NF^{+} + e + e$	c)	[18]	
$e + NF \rightarrow N^+ + F + e + e$	c)	[18]	
$e + NF \rightarrow F^+ + N + e + e$	c)	[18]	
$e + NF_3^+ \rightarrow NF_2 + F$	1×10^{-7}	est. [29], h)	-11.1
$e + NF_2^+ \rightarrow NF + F$	1×10^{-7}	est. [29]	-6.3 ^{g)}
$e + NF^+ \rightarrow N^* + F$	1×10^{-7}	est. [29]	-7.1
Electron Impact F ₂ /F	-		
$e + F_2 \rightarrow F_2 + e$	c)	[30]	
$e + F_2 \rightarrow F + F$	c)	[30]	-1.8
$e + F_2 \rightarrow F + F + e$	c)	[30]	-1.6
$e + F_2 \rightarrow F_2^* + e$	c)	[30]	
$e + F_2 \rightarrow F_2^+ + e + e$	c)	[30]	
$e + F_2^+ \rightarrow F + F^*$	1×10^{-7}	est. [29]	-0.6
$e + F \rightarrow F + e$	c)	[31]	
$e + F \rightarrow F^* + e$	c)	[31]	
$e + F \rightarrow F^+ + e + e$	c)	[31]	
$e + F^* \rightarrow F^+ + e + e$	c)	[31]	
$e + F^+ \rightarrow F^*$	$5.3 \times 10^{-12} \mathrm{T_e}^{-0.5}$	est. [32]	
$e + e + F^+ \rightarrow F^* + e$	$5.12 \times 10^{-27} \text{T}_{\text{e}}^{-4.5}$	est. [32]	
Electron Impact N _x O _y	- 0		
$e + NO \rightarrow NO + e$	c)	[33]	

Cross sections for electron collisions with methane

M.-Y. Song, J.S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kokoouline, Y. Nakamura & J. Tennyson, J. Phys. Chem. Ref. Data, **44**, 023101 (2015)

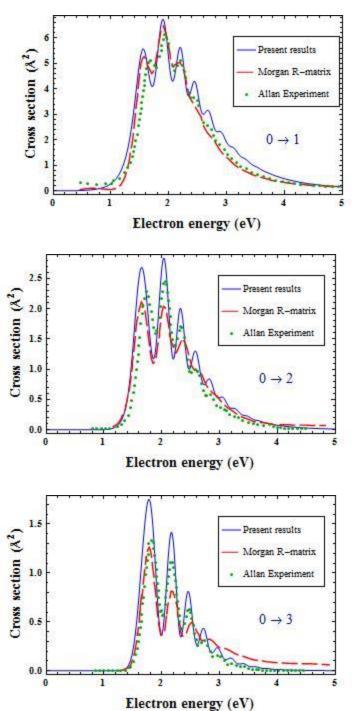
Cross sections for electron collisions with methane

M.-Y. Song, J.S. Yoon, H. Cho, Y. Itikawa, G. Karwasz, V. Kokoouline, Y. Nakamura & J. Tennyson, J. Phys. Chem. Ref. Data, **44**, 023101 (2015)

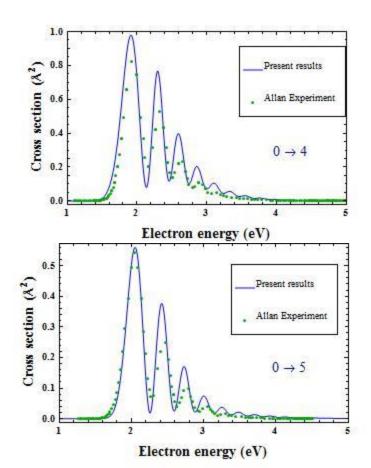

PHYS4ENTRY

PLANETARY ENTRY INTEGRATED MODELS

— SEVENTH FRAMEWORK PROGRAMME —

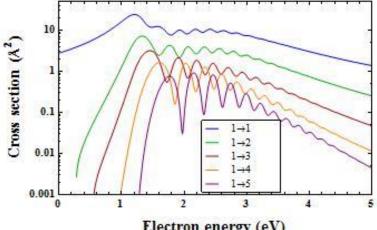


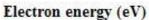
Electron – CO: ²Π resonance

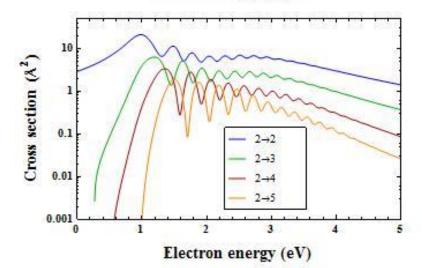

R-matrix resonance positions and widths

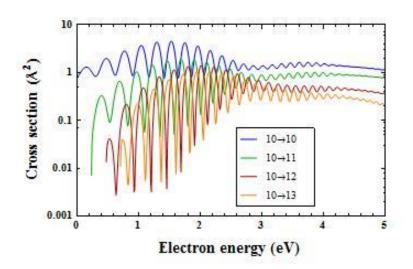
Static exchange plus polarisation (SEP) model

Electron – CO:

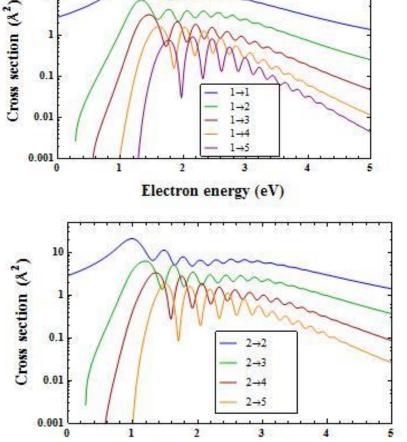

resonance enhanced vibrational excitation $0 \rightarrow v'$




Electron – CO:


resonance enhanced vibrational excitation

High
$$v' - v''(>0)$$


V Laporte, CM Cassidy, J Tennyson & R Celliberto, Plasma Sources Sci. Technol. **21**, 045005 (2012)

Electron – CO:

resonance enhanced vibrational excitation

High
$$v' - v''(>0)$$

V Laporte, CM Cassidy, J Tennyson & R Celliberto, Plasma Sources Sci. Technol. **21**, 045005 (2012)

Electron energy (eV)

10

Dissociative attachment + impact dissociation of CO

V Laporte, J Tennyson & R Celliberto, Plasma Sources Sci. Technol., **25**, 01LT04 (2016).

Calculations extended to:

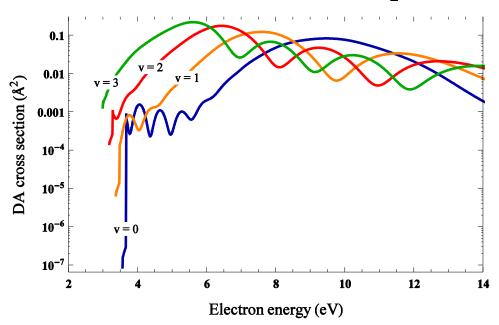
$$e + NO(v^{"}) \rightarrow e + NO(v^{'})$$

$$e + NO(v^{"}) \rightarrow N + O^{-}$$

$$e + O_2(v^n) \rightarrow e + O_2(v^n)$$

V. Laporta et al., PSST **22**, 025001 (2013) and **29**, 225293 (2020)

$$e + O_2(v^n) \rightarrow O + O^-$$


$$e + N_2(v^n) \rightarrow e + N_2(v^n)$$

V. Laporta, D.A. Little, R. Celiberto & J. Tennyson, PSST, **23**, 065002 (2014)

$$e + CO_2(v^n) \rightarrow e + CO_2(v^n)$$

V. Laporta, J. Tennyson & R. Celiberto, PSST, **25**, 06LT02 (2016).

Dissociative attachment of O₂

V. Laporta, R. Celiberto & J. Tennyson, Phys. Rev. A, **91**, 012701 (2015)

ExoMol

Hot line lists; Published in MNRAS

I. BeH, MgH, CaH

II. SiO

III. HCN/HNC

IV. CH₄

V. NaCl, KCl

VI.PN

VII. PH₃

VIII. H₂CO

IX. AIO

X. NaH

XI. HNO₃

XII. CS

XIII. CaO

XIV. SO₂

XV. HOOH

XVI. H₂S

XVII. SO₃

XVIII. VO

XIX. $H_2^{18}O$, $H_2^{17}O$

 $XX. H_3^+$

XXI. NO

XXII. SiH₄

XXIII. PO, PS

XXIV. SiH

XXV. SiS

XXVI. SN, SH

XXVII. AIH

XXVIII. C₂H₄

XXIX. CH₃CI

XXX. $H_2^{16}O$

XXXI. C_2

XXXII. TiO

XXXIII. MgO

XXXIV. PH

XXXV. NH₃

XXXVI SH (UV)

XXXVII HCCH

XXXVIII SiO₂

XXXIX CO₂

XL. H_3O^+

XLI: NaOH, KaOH

XLII: NO (UV)

XLIII: NaO

XLIV: SiO (UV)

In progress

D₃+, D₂H+ O₂, C₃, TiH, NaO, YO, SO,

CaOH, AIF, AICI, HCO+

Formal data releases:

J. Tennyson et al., J. Mol. Spectrosc.

373, 73 (2016)

and JQSRT **255**, 107228 (2020)

ExoMol: 2011-16

ExomolHD: 2020-25

New: ELiDa: ExoMol Lifetimes Database

Martin Hanicinec and Tian Tian He

A data base of state lifefimes and branching ratios

- vibronic state resolved
- gives cascade through states by radiative decay

Plan:

- Couple with QDB
- Include radiative decay in the 0D model (PyGMoIRT)
- Spectral modeling of the resultant plasma

Elida Exomol () fetimes database Data About API Contact

Transitions from the state SiH B($^2\Sigma^+$); ν =0

Transition	Δ <i>E</i> (eV)	Partial lifetime (s)	Branching ratio
SiH B($^2\Sigma^*$); ν =0 \rightarrow SiH X($^2\Pi$); ν =3	0.170	6.24e-01	2.22e-01
	0.150	7.09e-01	1.96e-01
	0.182	7.95e-01	1.75e-01
	0.124	9.85e-01	1.41e-01
	0.183	1.14e+00	1.22e-01
	0.193	1.99e+00	6.96e-02
	0.205	3.83e+00	3.63e-02
	0.226	8.87e+00	1.56e-02
	0.111	9.61e+00	1.44e-02
	0.260	2.30e+01	6.03e-03
	0.265	6.32e+01	2.20e-03

Data About API Contact

States of SiH

State	Energy (eV)	Lifetime (s)	Transitions from	Transitions to
	0.196	3.04e-02		
	0.216	1.01e-01		
	0.219	8.35e-03		
	0.222	3.82e-02		
	0.226	7.80e-02		
	0.233	6.79e-02		
	0.237			
	0.250	8.44e-03		
	0.275	4.52e-03		
	0.296	3.24e-03		
	0.307	2.62e-03		
	0.309	2.27e-03		
	0.318	2.05e-03		
	0.331	1.91e-03		
	0.352	1.83e-03		
	0.385	1.78e-03		
	0.390	1.76e-03		
	0.402	1.77e-03		
	0.421	1.80e-03		
	0.431	1.85e-03		

Conclusions

- 1. Theory can provide a wealth of data important for plasma models;
- 2. Particular important for where experiment can't reach:
 - a. Radicals and transient species;
 - b. Excited states (and high temperatures)
 - c. Isotopologues (ie isotopic substitution)
- 3. Uncertainty quantification: work in progress
- 4. Results should be available from databases!