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Low Temperature Plasmas (LTPs)

Processing of complex surfaces and interfaces
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Complex plasma-surface interactions:

* Hard-to-model dynamics across multiple time- and
length-scales

* Time-varying surface characteristics

* Lack of real-time diagnostics for surface properties

Grand challenge: Reproducible and precise control
of plasma-surface interaction mechanisms



Why Advanced Feedback Control for LTPs?

Current practice: Operating protocols for LTP sources devised offline

Why go beyond a single operating protocol?

* Counter disturbances to reproducible plasma operation
= Small changes in plasma, surface, or environment can alter fluxes to surface
= Surface characteristics can vary from point to point and change over time

* Track plasma-induced surface effects to regulate plasma-surface interactions
= Change plasma parameters to optimize delivery of fluxes to surface in real-time

Substrate Impedance Separation Distance

Vision
* Controlled environments for studying plasma effects

 Safe and effective LTP devices for point-of-use
applications

e Automated and robotic control for LTP processing of
(bio)materials (e.g., using an array of LTP discharges for
“large-scale” materials processing)










Model Predictive Control (MPC)

An optimization-based feedback control strategy
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MPC Applications

Applications over a wide range of length- and time-scales

: 3 Embedded systems

Energy systems

=+ Traction control

Smart buildings

dlld'l| Chemical processes

Tissue engineering 7

7= | Train scheduling

Production planning|



MPC for Feedback Control of LTP Processing of Complex Surfaces
Key challenges in control of LTP applications

* Handle hard-to-model and time-varying plasma-induced surface effects:
= Predictive models may not be available, thus there is a need for model learning “on the fly”

= How to explore and exploit the system behavior simultaneously?

* Handle system uncertainties, imperative in safety-critical and high-performance applications:
= Uncertainties arise from disturbances from the environment and model imperfections due to
the complex nature of plasma and surface dynamics

= How to model and incorporate uncertainty into control?

* Handle fast system dynamics and thus high measurement sampling rates:
= There is a need for real-time diagnostics and fast control algorithms

= How to achieve fast control computations under computational resource limitations?

Leverage stochastic optimal control theory and machine learning to address these
challenges towards safe learning-based predictive control for LTPs




Safe Learning-based MPC

Mathematical representation of system dynamics

* A nominal model is augmented with a function that is learned in real-time to capture
unmodeled phenomena using online data:
= The nominal model describes our prior knowledge and can be a high-fidelity model or
a data-driven model

= Gaussian process regression is an effective approach for learning the unknown dynamics

unknown dynamics
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Safe Learning-based MPC

Gaussian processes are non-parametric models and quantify uncertainty of predictions
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Safe Learning-based MPC

Gaussian processes are non-parametric models and quantify uncertainty of predictions

[ g(z,u) NN(ud(a:,u),Ed(x,u)) ]
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Safe Learning-based MPC

Control problem that must be solved in real-time
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Learning of unmodeled phenomena and uncertainty handling for safe learning
are naturally incorporated into online decision-making
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Application to a kHz-Excited Atmospheric Pressure Plasma Jet in He

He flow

'

—@ high-voltage source

1. Identify nominal model

surface temperature &
plasma optical intensity

B

He flowrate & applied voltage

2. Train GP model with 100 data points

3. Objective is to deliver thermal effects
at the end of treatment time

CEMT = CEM + K®#3-T%) 5¢

safety-critical applications in plasma medicine






Delivery of Thermal Effects to Complex Surfaces
Control the cumulative thermal effects of plasma
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Learning-based MPC versus MPC with an Offline Trained Model

Online learning enables significant performance improvement while honoring constraints
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- Faster LTP treatment without compromising safety
Bonzanini et al., 2021. 13




Towards Embedded Control Systems for LTPs
Safe and effective operation of fast sampling LTP devices using inexpensive hardware

Real-time control hinges on fast control computations
* Online solution of the optimization problem can be expensive

* Plasmas have fast dynamics, requiring fast sampling times for feedback control

* Point-of-use and portable LTP devices require control implementations on resource-
limited embedded systems

Fast embedded predictive control systems
* Sub-millisecond model predictive control computations

* Control implementations on low-memory and low-power
embedded systems

* Inexpensive hardware




Deep Neural Network-based MPC

Towards embedded implementation of deep learning-based controllers
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Explicit control law MPC law (implicit function of state)

* Low memory footprint

(e.g., setpoints)

Parisini and Zoppoli, 1995 an Optlmlzatlon prOblem
Chen et al., 2018

Karg and Lucia, 2018
Paulson and Mesbah, 2020
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Deep Neural Network-based MPC

Towards embedded implementation of deep learning-based controllers

System states & Solve Optimal Optimal system
Control Problem . .
parameters (x, p) Offline inputs u0|k(x, p)

Bonzanini et al., 2020.



Deep Neural Network-based MPC

Towards embedded implementation of deep learning-based controllers

System states & Solve Optimal Optimal system
Control Problem . .
parameters (x, p) Offline inputs u0|k(x, p)
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Deep Neural Network-based MPC

Towards embedded implementation of deep learning-based controllers

System states & Solve Optimal Optimal system
Control Problem . .
parameters (x, p) Offline inputs u0|k(x, p)
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Deep Neural Network-based MPC

Towards embedded implementation of deep learning-based controllers
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Deep Neural Network-based MPC

Towards embedded implementation of deep learning-based controllers

Safe input set
l_‘_\
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X
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= Applied input

Robust control invariant (RCI) set

RCI sets for linear and hybrid systems can be
calculated via already-established methods

Safe Input Set
eu(x)

Paulson and Mesbah, 2020

there exists for all possible
feasible input disturbances
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This can be solved as a mp-QP for faster online evaluation! 20



Training of Deep Neural Network-based MPC

Trade-off between low error and low memory requirement
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* Trained the DNN offline using multiple
combinations of hyperparameters

* MISE decreases as number of layers and number
of nodes per layer increase

* At the same time more nodes and layers
correspond to a larger memory footprint

* Trade-off between accuracy and memory
requirement

N layers — 5

Bonzanini et al., 2020.

Nnodes =6



Closed-loop Simulations
DNN-based MPC provides accurate approximation
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NMPC and DNN-based NMPC

* Practically indistinguishable performance
* DNN provides an accurate approximation

 Constraint violation - may compromise safety!

PNN-based NMPC

* Worse performance (longer treatment time)
* No constraint violation

» Trade-off between robustness and performance



Computation Times
Average computation time reduced by up to a factor of 100

Reduction of average computation
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Real-time Control Experiments
Safety achieved at the expense of performance

1.5 -—
R without Performance loss due to
(- ") . . . . .
E 1 projection,_o—e o guaranteed constraint satisfaction
= with projection under uncertainty
0.5 |
O —— PNN-based NMPC
e | - |—©—DNN-based NMPC Constraint violation avoided
0 5 10 15 20 25 by projecting onto a safe set
Time (s)
42+ fe==®|without projection ]

A4O 5

2 3807
* Memory footprint: 1 kb ol

—6— PNN-based NMPC

34 - —6— DNN-based NMPC | |

* Computation time: 2 ms

Bonzanini et al., 2020. 24



Takeaways

* Predictive control is essential for effective LTP treatment of complex surfaces:
= Controlled environments for studying plasma effects

= Safe and effective LTP devices for point-of-use applications
= Automated and robotic control for LTP processing of (bio)materials

* Learning-based methods can create unique opportunities for:
= Leveraging high-fidelity LTP models along with data-driven approaches to learn and control
hard-to-model plasma and surface phenomena

* Handling uncertainties in real-time decision making towards ensuring safe and repeatable LTP

treatments
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