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Low Temperature Plasmas (LTPs)
Processing of complex surfaces and interfaces 

Surface 
Coating

Surface 
Functionalization

Biomaterials 
Processing

https://www.asbindustries.com/thermal-spray-coatings 
http://www.igs.titech.ac.jp/iper/english/iper2/6/detail_44.html
K-D Weltmann and Th von Woedtke, 2016.

Not treated Plasma treated

Water droplets on polyimide film
Complex plasma-surface interactions:
• Hard-to-model dynamics across multiple time- and 

length-scales 
• Time-varying surface characteristics
• Lack of real-time diagnostics for surface properties  

Plasma Etching 
Process

Grand challenge: Reproducible and precise control 
of plasma-surface interaction mechanisms



Why go beyond a single operating protocol?
• Counter disturbances to reproducible plasma operation
 Small changes in plasma, surface, or environment can alter fluxes to surface
 Surface characteristics can vary from point to point and change over time

• Track plasma-induced surface effects to regulate plasma-surface interactions 
 Change plasma parameters to optimize delivery of fluxes to surface in real-time  

Why Advanced Feedback Control for LTPs? 
Current practice: Operating protocols for LTP sources devised offline 

Substrate Impedance Separation DistanceVision 
• Controlled environments for studying plasma effects
• Safe and effective LTP devices for point-of-use 

applications 
• Automated and robotic control for LTP processing of 

(bio)materials (e.g., using an array of LTP discharges for 
“large-scale” materials processing)  
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Receding-horizon  
control introduces 

feedback

System

Model Predictive Control (MPC)
An optimization-based feedback control strategy 

nonlinear model

constraints

objective
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Embedded systems 

Traction control

Chemical processes

Train scheduling

Energy systems

Smart buildings

Tissue engineering

Production planning

ns

μs

ms

seconds

minutes

hours

days

weeks

MPC Applications 
Applications over a wide range of length- and time-scales 
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MPC for Feedback Control of LTP Processing of Complex Surfaces 
Key challenges in control of LTP applications 

• Handle hard-to-model and time-varying plasma-induced surface effects: 
 Predictive models may not be available, thus there is a need for model learning “on the fly”
 How to explore and exploit the system behavior simultaneously? 

• Handle system uncertainties, imperative in safety-critical and high-performance applications: 
 Uncertainties arise from disturbances from the environment and model imperfections due to 

the complex nature of plasma and surface dynamics
 How to model and incorporate uncertainty into control?

• Handle fast system dynamics and thus high measurement sampling rates:
 There is a need for real-time diagnostics and fast control algorithms
 How to achieve fast control computations under computational resource limitations? 

Leverage stochastic optimal control theory and machine learning to address these 
challenges towards safe learning-based predictive control for LTPs
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Safe Learning-based MPC
Mathematical representation of system dynamics 

nominal model

unknown dynamics

process noise

unknown dynamics 
live in the subspace 
of this matrix

• A nominal model is augmented with a function that is learned in real-time to capture 
unmodeled phenomena using online data: 
 The nominal model describes our prior knowledge and can be a high-fidelity model or                    

a data-driven model
 Gaussian process regression is an effective approach for learning the unknown dynamics 
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Calculate mismatch term over 
history M and store as a new dataset

Use dataset to train a Gaussian process model that 
can be used to predict function at any test point

function of full history...

Safe Learning-based MPC
Gaussian processes are non-parametric models and quantify uncertainty of predictions 

Rasmussen and Williams, 2016.
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Safe Learning-based MPC
Gaussian processes are non-parametric models and quantify uncertainty of predictions 
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Safe Learning-based MPC
Control problem that must be solved in real-time 

expected performance 
(control objective)

system dynamics + uncertainty

decision variables 

nonlinear state and input constraints

measured state to provide feedback

Learning of unmodeled phenomena and uncertainty handling for safe learning                   
are naturally incorporated into online decision-making 
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He flow

high-voltage source

2. Train GP model with 100 data points

surface temperature & 
plasma optical intensity 

safety-critical applications in plasma medicine  

3. Objective is to deliver thermal effects 
at the end of treatment time

Application to a kHz-Excited Atmospheric Pressure Plasma Jet in He 

He flowrate & applied voltage

1. Identify nominal model






Delivery of Thermal Effects to Complex Surfaces
Control the cumulative thermal effects of plasma 

Cumulative equivalent minutes (CEMT)
Describes cell death dependence on temperature and 
exposure time 

[min]

Plasma-surface thermal effect 

1 min at 43°C = 0.5 min at 44°C   
1 min at 43°C = 2 min at 42°C   

Time

Temperature

Thermal response of 
mammalian cells

Cumulative and nonlinear 
function of temperature

Sapareto and Dewey, 1984. 12
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safe LB-MPC (GP learned online) 

MPC (GP learned offline)
push closer to constraint so more 
thermal effects delivered faster

Learning-based MPC versus MPC with an Offline Trained Model 
Online learning enables significant performance improvement while honoring constraints  

Bonzanini et al., 2021.
Faster LTP treatment without compromising safety 

Is this practical?



Towards Embedded Control Systems for LTPs
Safe and effective operation of fast sampling LTP devices using inexpensive hardware 

Real-time control hinges on fast control computations
• Online solution of the optimization problem can be expensive
• Plasmas have fast dynamics, requiring fast sampling times for feedback control 
• Point-of-use and portable LTP devices require control implementations on resource-

limited embedded systems

Fast embedded predictive control systems 
• Sub-millisecond model predictive control computations
• Control implementations on low-memory and low-power                                                           

embedded systems
• Inexpensive hardware 
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Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers 

MPC law (implicit function of state)Explicit control law

(e.g., setpoints)

(state)

• Cheap to evaluate
• Low memory footprint

Replaces online solution of 
an optimization problem Parisini and Zoppoli, 1995

Chen et al., 2018
Karg and Lucia, 2018
Paulson and Mesbah, 2020 15



Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

16Bonzanini et al., 2020.



Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

17Bonzanini et al., 2020.



• Fast control computations

• Control inputs may no longer be 
robustly feasible (no guarantees on 
state constraint satisfaction) 

Unsafe control!

Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers
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DNN training can be 
done fully offline!

Bonzanini et al., 2020.



Projection of DNN-based 
control inputs onto a              

safe input set

×
DNN 

Prediction

∘ Applied input

Safe Input Set
𝒞𝒞𝑢𝑢

×∘
DNN Prediction

= Applied input

Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers

19Bonzanini et al., 2020.



Paulson and Mesbah, 2020

for all states 
in RCI

there exists 
feasible input

such that successor 
states in RCI

for all possible 
disturbances

Robust control invariant (RCI) set

Safe input set

Safe operation guaranteed 

This can be solved as a mp-QP for faster online evaluation!

RCI sets for linear and hybrid systems can be 
calculated via already-established methods

Deep Neural Network-based MPC
Towards embedded implementation of deep learning-based controllers
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Training of Deep Neural Network-based MPC
Trade-off between low error and low memory requirement

• Trained the DNN offline using multiple 
combinations of hyperparameters

• MSE decreases as number of layers and number 
of nodes per layer increase

• At the same time more nodes and layers 
correspond to a larger memory footprint

• Trade-off between accuracy and memory 
requirement

21Bonzanini et al., 2020.



Closed-loop Simulations
DNN-based MPC provides accurate approximation

PNN-based NMPC
• Worse performance (longer treatment time)
• No constraint violation
• Trade-off between robustness and performance

NMPC and DNN-based NMPC
• Practically indistinguishable performance
• DNN provides an accurate approximation
• Constraint violation → may compromise safety!

22Bonzanini et al., 2020.



Computation Times
Average computation time reduced by up to a factor of 100

DNN-based MPC 
shows a constant 
computation time! Adding the 

projection step 
has a small 
impact on 
computational 
cost

Reduction of average computation 
time by a factor of 10 − 100!

23Bonzanini et al., 2020.



Real-time Control Experiments 
Safety achieved at the expense of performance

Performance loss due to 
guaranteed constraint satisfaction 

under uncertainty

without 
projection

with projection

Constraint violation avoided 
by projecting onto a safe set

without projection

with projection
• Computation time: 2 ms
• Memory footprint: 1 kb

24Bonzanini et al., 2020.



Takeaways 
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• Predictive control is essential for effective LTP treatment of complex surfaces:
 Controlled environments for studying plasma effects
 Safe and effective LTP devices for point-of-use applications 

 Automated and robotic control for LTP processing of (bio)materials
• Learning-based methods can create unique opportunities for:
 Leveraging high-fidelity LTP models along with data-driven approaches to learn and control 

hard-to-model plasma and surface phenomena 
 Handling uncertainties in real-time decision making towards ensuring safe and repeatable LTP 

treatments 
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