Multiscale Modeling of Plasma Water Interfaces

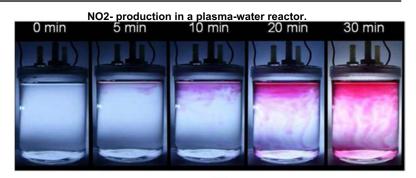
Davide Curreli, Shane Keniley

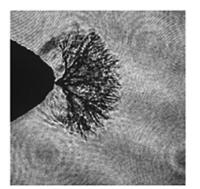
University of Illinois at Urbana Champaign

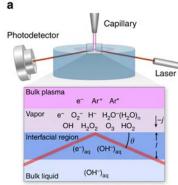
dcurreli@illinois.edu keniley1@illinois.edu

Outline

- 1. Motivation & Background
- 2. MOOSE-Based Applications for Low-Temperature Plasmas
 - 1. CRANE: chemical kinetics software
 - 2. ZAPDOS: plasma transport software
 - 3. Verifications of Zapdos-Crane
- 3. Case 1: Ar/H₂O (humid argon) plasma on liquid water
 - 1. Argon-Water DC discharge
 - 2. Species in the gas and liquid phases
 - 3. Aqueous Charge Balancing
 - 4. Reactive Species Generation
 - Solvated Electrons at the Interface
- 4. Case 2: Air/H₂O (humid air) plasma on liquid water
 - 1. Air-Water DC discharge
 - 2. Species in the gas and liquid phase
 - 3. Solvated Electrons, Penetration Depth
 - 4. Solvated Electrons, Reaction Pathways
- 5. Conclusions


Motivation: Plasma-Water Interactions


Applications


- Generation of reactive oxygen and nitrogen species
 - Antimicrobial properties
 - Ammonia production
 - Wound disinfection and healing
 - And more
- Other, domain specific
 - Plasma medicine
 - Synthesize graphene particles and nanosheets
 - Toxic metal detection
 - And much more

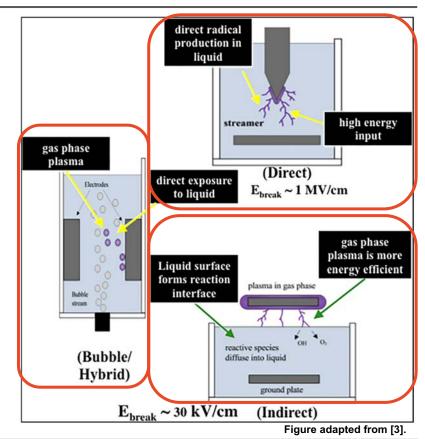
Advantages

- Cheap and abundant materials
- "Cold" plasma useful for thermally sensitive surfaces
 - heat-sensitive equipment
 - bodily wounds

Top: NO2- production in a plasma-water reactor. [1] Bottom-right: Schematic of solvated electron measurement experiment. [2] Bottom-left: Streamers propagating in liquid water. [3]

Methods

Plasma-in-liquid


- Directly ionize water phase with high voltages
- Requires high voltages, but good source of OH production

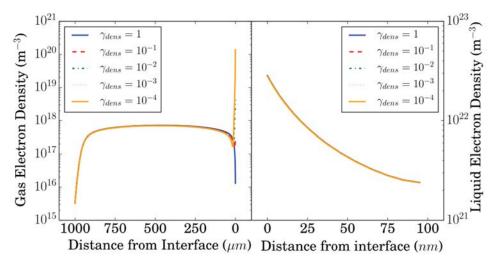
Bubble plasmas

 Gas composition of bubbles may be tailored to adjust chemistry

Plasma-liquid interface

- Plasma generated in gas phase
- Transport of reactive species depends on diffusion through water interface
- Electrons drive RONS production by entering water phase and solvating

[3] Foster, J. Plasma-based water purification: Challenges and prospects for the future." Physics of Plasmas 24 055501 (2017)


Introduction to Zapdos-Crane

- Plasma-liquid interfaces are notoriously nonlinear, multiscale in both space and time, and multiphysics
- The MOOSE finite element framework was selected as an appropriate platform for development of a general plasma software package:
 - MOOSE applications are natively parallelizable and intended for high performance computing (HPC)
 - All MOOSE apps are able to be coupled together, facilitating multiphysics simulations
- The MOOSE app <u>Zapdos</u>¹ was developed specifically for modeling plasma transport in 2015-2016
 - As of 2017, only included support for electron and argon discharges
- No chemistry capabilities were included in the MOOSE framework, and Zapdos was hard-coded to accept only a handful of reactions

[4] Lindsay, A. et al. J. Phys. D: Appl. Phys. 49 (2016) 235204 (9pp)

[5] C. DeChant, S. Keniley, D. Curreli, K. Stapelmann, S. Shannon, "Multi-physics simulation of the COST APPJ in the MOOSE framework", Bull. Am. Phys. Soc. 71th Annual Gaseous Electronic Conference, GT1.74, Portland, Oregon, Nov 5-9, 2018

Electron density as a function of interfacial loss coefficient in the gas phase (left) and water phase (right). Simulation was performed with Zapdos. Figure adapted from [4].

Model Development

- As of 2017, Zapdos was hard-coded to accept only four species (e-, Ar+ in the gas phase, and e-(aq) and OH-(aq) in the water), with 5 total reactions.
- As part of past NSF research, we introduced two new capabilities:
 - 1. Developed Plasma Chemistry Application in MOOSE: "CRANE"

https://github.com/lcpp-org/crane

- Written a model capable of handling an arbitrary number of reactions
- Reactions can be automatically parsed by code into source and sink terms
- Coupled to Zapdos to add source terms to drift-diffusion equations

2. Upgraded Zapdos

https://github.com/shannon-lab/zapdos

- Allowed an arbitrary number of user-defined species
- Included surface charge accumulation
- Upgraded water model to include neutral transport across interface

Zapdos: Drift-Diffusion-Reaction Equations

Volumetric Terms:

Species Density:

$$rac{\partial n_s}{\partial t} +
abla \cdot ec{\Gamma}_s = R_{sr}$$

Electron Energy:

$$rac{\partial (n_e \epsilon)}{\partial t} +
abla \cdot ec{\Gamma}_\epsilon = -eec{\Gamma}_e \cdot ec{E} + R_{sj,\epsilon}$$
 Joule Heating

$$ec{\Gamma}_s = \pm \mu_s ec{E} n_s - D_s
abla n_s$$

$$ec{\Gamma}_{\epsilon} = -rac{5}{3}\epsilonec{\Gamma}_{e} - rac{5}{3}n_{e}D_{e}
abla\epsilon$$

Poisson Equation:

$$-
abla^2\phi=rac{(\sum_i q_i n_i + q_e n_e)}{\epsilon_0}$$

Boundary Conditions [6]:

Electron BC:

$$egin{aligned} ec{\Gamma}_e \cdot \hat{n} &= rac{1-r_e}{1+r_e}[-(2a_e-1)\mu_eec{E}\cdot\hat{n}n_e + rac{1}{2}v_{th,e}n_e - rac{1}{2}v_{th,e}n_\gamma] + \ &-rac{1}{2}v_{th,e}n_\gamma] - rac{2}{1+r_e}(1-a_e)\sum_i \gamma_iec{\Gamma}_i\cdot\hat{n} \end{aligned}$$

Ion/Netural BC:

$$ec{\Gamma}_i\cdot\hat{n}=rac{1-r_i}{1+r_i}[\pm(2a_i-1)\mu_iec{E}\cdot\hat{n}n_i+rac{1}{2}v_{th,i}n_i]$$

Reaction Rates:

$$R_{sj} = \sum_{j}
u_{sj} k_j \prod_{r}^R n_r$$

$$R_{sj,\epsilon} = \sum_{j}
u_{sj} k_j \prod_{r}^R n_r \Delta \epsilon_j$$

CRANE: Chemical Kinetics

- Crane is a standalone Moose application developed as part of the previous NSF work focused on modeling arbitrary systems of ODEs
- Source code: https://github.com/lcpp-org/crane
- When coupled to Zapdos, it provides the reaction rate portion of the drift-diffusion-reaction system

$$rac{dn_s}{dt} = \sum_{r=1}^{r_{max}} K_{sr}$$
 $K_{sr} =
u_{sr} k_r \prod_l n_l^L$ Stoichiometric Rate Product of all Coefficient Coefficient Reactants for reaction r

- Electron-impact reactions preprocessed with external Boltzmann solver (Bolsig+)
 - \circ Integral of EEDF $k_r = \gamma \int_0^\infty \varepsilon \sigma_r f_0 d\varepsilon$
 - Calculates rate coefficients (k) and electron transport coefficients
 - Values stored in look-up tables for a range of mean electron energies

 Developed to allow an arbitrary number of reactions to be added in a human-readable format

```
Reaction
                                         Rate Coefficient
                                                                            Units
                                                                 m^3 \text{ mol}^{-1} \text{ s}^{-1}
e + Ar \rightarrow e + Ar
                                                EEDF
e + Ar \rightarrow Ars + e
                                               EEDF
e + Ars \rightarrow e + Ar
                                               EEDF
e + Ar \rightarrow 2e + Ar^+
                                               EEDF
e + Ars \rightarrow 2e + Ar^+
                                               EEDF
Ars + Ars \rightarrow e + Ar + Ar^+
                                           3.3734 \times 10^{8}
Ars + Ar \rightarrow Ar + Ar
                                            1.807 \times 10^{3}
```

Typical reaction list you find in a paper

How you write it in CRANE:

```
[Reactions]
  [argon reactions]
   species = 'em Ar+ Ar*'
   file location = 'rate files'
   potential = 'potential'
   reactions =
                                                    : EEDF [elastic] (reaction1)
                                                    : EEDF [-11.5]
                                                                      (reaction2)
                      Ar* -> em + Ar
                                                    : EEDF [11.5]
                                                                      (reaction4)
                      Ar -> em + em + Arp
                                                    : EEDF [-15.76]
                                                                      (reaction3)
                                                    : EEDF [-4.43]
                 em + Ar* -> em + em + Arp
                                                                      (reaction5)
                                                    : 3.3734e8'
                 Ar* + Ar* -> em + Ar + Arp
                 Ar* + Ar -> Ar + Ar
                                                    : 1807
 []
```

Source code: https://github.com/shannon-lab/zapdos

Zapdos required multiple updates to address realistic plasma-water chemistry:

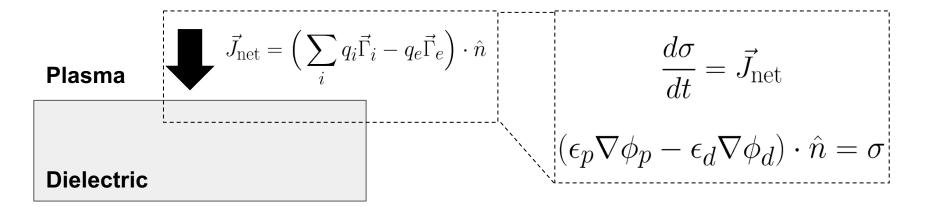
- 2.1 Accept arbitrary number *s* of user-defined plasma species
- 2.2 Add surface charge accumulation for dielectric interfaces
- 2.3 Include heavy species solvation and evaporation boundary conditions

$$rac{\partial n_s}{\partial t} +
abla \cdot ec{\Gamma}_s = R_{sr}$$

$$ec{\Gamma}_s = \pm \mu_s ec{E} n_s - D_s
abla n_s$$

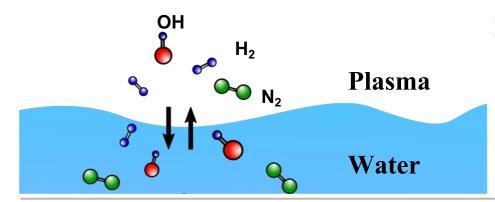
$$-
abla^2\phi=rac{(\sum_i q_i n_i + q_e n_e)}{\epsilon_0}$$

2.1 Accept arbitrary number of user-defined species


- Existing code was abstracted to include arbitrary species variables
- A new class, 'HeavySpeciesMaterial', was added to add species properties (mass, charge, transport coefficients)
- Mobility and diffusivity are by default given by Einstein's relation (user can change)

```
[gas_species_example]
  type = HeavySpeciesMaterial
  heavy_species_name = Ar+
  heavy_species_mass = 6.64e-26
  heavy_species_charge = 1.0
  diffusivity = 1.6897e-5
[]
```

$$\mu_s = \frac{Z_s q_e D_s}{k_B T_e}$$


2.2 Added surface charge accumulation for dielectric interfaces

- Dielectrics are widely used in plasma discharges, but no interface existed in Zapdos to handle surface charge accumulation
- Surface charge was added to the model in two parts:
 - a. ODE at dielectric boundary to describe surface charge accumulation
 - b. Interfacial boundary condition for discontinuous electric field

2.3 Include heavy species solvation and evaporation boundary conditions

- A two-way interfacial transport model was added to Zapdos to allow neutral species to transport between gas and liquid phases based on Henry's law
 - a. Henry coefficient, H, defines equilibrium concentration of species at interface
 - b. Flux equality at the interface allows species to naturally flow in or out of the liquid
- While Henry's law is an equilibrium relationship, but only a *local* equilibrium at the interface is assumed - no assumption about bulk concentrations is made

Henry's Law (local at the interface):

$$Hn_G = n_L$$

Flux Equality:

$$D_G \nabla n_G = D_L \nabla n_L$$

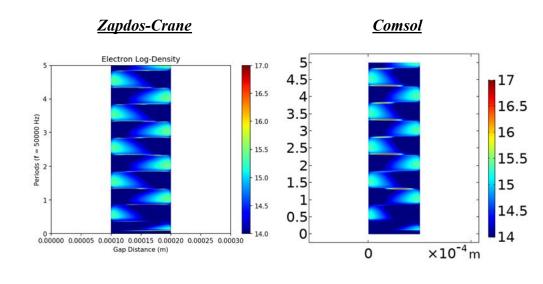
Verification of Zapdos-Crane

Both codes were verified against multiple known problems; two examples:

Crane vs. ZDPlasKin (0D reaction networks)

1013 Error (%) Species2.19 1011 Ar^+ 4.02 Ar^{2+} 2.19 Ar^* 1.79 10⁹ Density [cm⁻³] 107 105 CRANE **ZDPlasKin** 10³

 10^{-7}

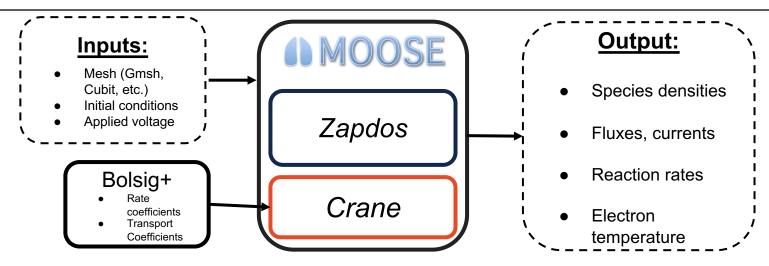

10-6

Time [s]

10-5

 10^{-3}

Zapdos-Crane vs. Comsol (1D Dielectric Barrier Discharge)

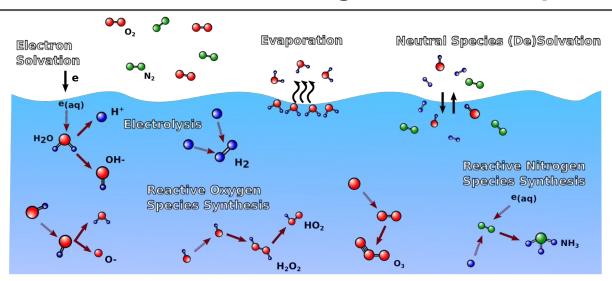

10-10

10-9

 10^{-8}

101

Typical Workflow


Zapdos-Crane was presented at a 2018 APS-GEC Workshop as an open-source plasma tool:

[8] C. Icenhour, S. Keniley, C. DeChant, C. Permann, A. Lindsay, R. Martineau, D. Curreli, S. Shannon, Multi-Physics Object Oriented Simulation Environment (MOOSE), Bull. Am. Phys. Soc. 71th Annual Gaseous Electronic Conference, BM2.1, Portland, Oregon, Nov 5-9, 2018

https://github.com/lcpp-org/crane

https://github.com/shannon-lab/zapdos

Plasma-liquid interfaces: a challenge for modern plasma

Multiscale and multiphysics

- Electron penetration depth: ~10-100 nm
- o Discharges: mm-m
- Electron solvation: O(fs)
- Electron-driven aqueous reactions: O(ns)
- Chemical reactions: O(us-ms)
- Species diffusion: O(ms minutes)

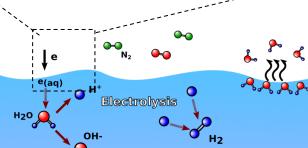
Strongly coupled behavior between plasma and water

- Electrons drive chemistry in the interface layer, which change chemical composition of the water
- Species diffuse in and evaporate out of interface, modifying plasma discharge conditions
- Electric fields, gas flow can deform water
- Plasma-induced fluid convection and turbulence is possible

Model of the Plasma-Water Interface in Zapdos-Crane

- Water region assumed to behave as a "dense plasma":
 - Same drift-diffusion-reaction equations apply
 - Higher background density
 - Relative permittivity of 81

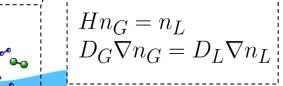
Plasma Region:


$$egin{aligned} rac{\partial n_s}{\partial t} +
abla \cdot ec{\Gamma}_s &= R_{sr} \ -
abla^2 \phi &= rac{(\sum_i q_i n_i + q_e n_e)}{\epsilon_0} \end{aligned}$$

Water Region:

$$rac{\partial n_{s,aq}}{\partial t} +
abla \cdot \vec{\Gamma}_{s,aq} = R_{sr,aq}$$

$$-
abla^2 \phi = \frac{(\sum_i q_i n_i + q_e n_e)}{\epsilon_0}$$


Electrons directly drift and diffuse into water: $\vec{\Gamma}_{e, \text{liquid}} \cdot \hat{n} = -\vec{\Gamma}_{e, \text{gas}} \cdot \hat{n}$

Assumptions:

- Electrons solvate instantly in water phase
 - Solvation time estimated to be O(fs)
- Heat transport is neglected (recently relaxed)
- Electron temperature is not considered in water

Heavy Species Solvation (Henry's Law):

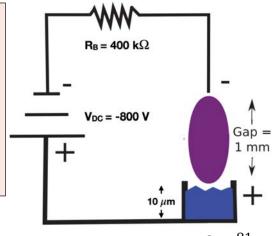
[10] Shane Keniley, Davide Curreli, Corey DeChant, and Steve Shannon, Numerical Modeling of the Plasma-Liquid Interface using the Zapdos-CRANE Open-Source Package, 72nd Annual Gaseous Electronics Conference, College Station, Texas, October 28-November 1, 2019

Case 1: Ar/H₂O plasma on liquid water

A first test of plasma-water interactions was developed in <u>humid argon</u> at atmospheric pressure

- DC circuit with ballast resistor boundary condition was applied
- Grounded wall at x = 1.01 mm
- Plasma-water interface at x = 1 mm

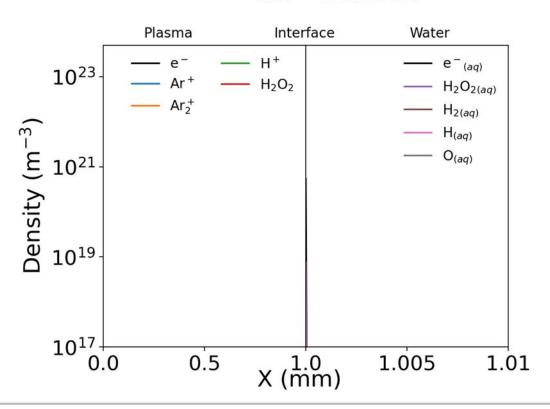
Left: pin-to-water discharge. (Adapted from [4])

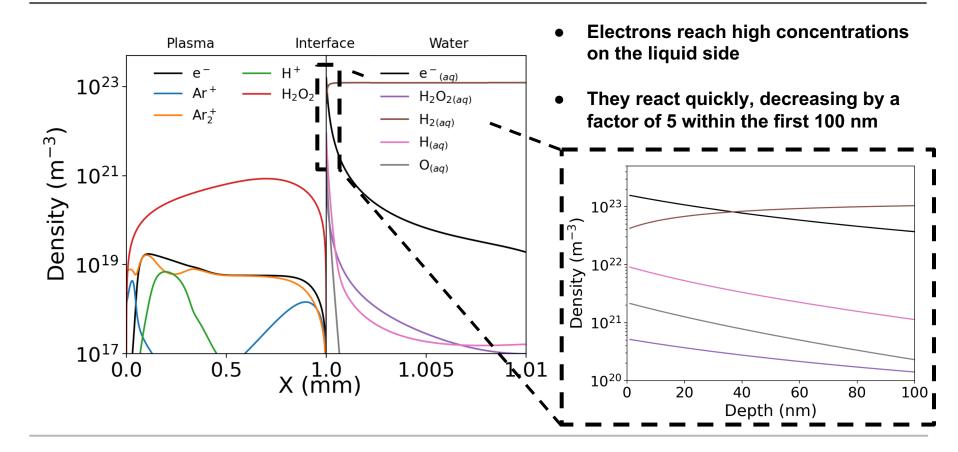

Bottom: Simulation domain

Plasma model:

- 26 species, 141 reactions
- Humid Argon
- Neutral Ar included as static background
- Reaction network largely adapted from Tian and Kushner [11]

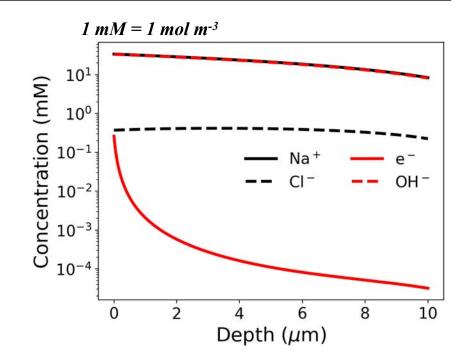
Water model:


- 17 species, 67 reactions
- H₂O static background
- Salt included at initial concentration of 10 mM
 - Artificial source term is used to simulate replenishment from bulk for Na⁺ and Cl⁻


 $\varepsilon_r = 81$

Results - Ar/H₂O plasma on liquid water, species density

Results - Ar/H₂O plasma on liquid water, species density



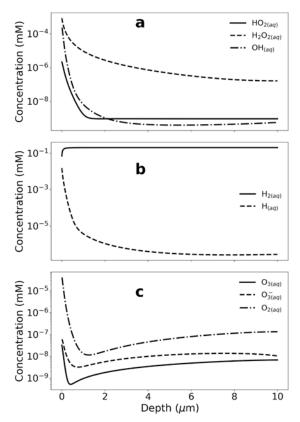
Results - Aqueous Charge Balancing

 Electrons quickly convert to OH⁻ through second-order recombination:

$$2e_{(aq)} + 2H_2O \rightarrow 2OH_{(aq)}^- + 2H_{2(aq)}$$

- OH⁻ accumulation forms highly basic solution at the interface
- Na⁺ accumulates at the surface to balance the negative charge injected by the plasma
- This effect was predicted by Rumbach [12]
 but not seen in previous models [13]

^[12] Rumbach, P. et al. Physical Review E, 95(5):53203 (2017)


^[13] Gopalakrishnan, R. et al. J. Phys. D: Appl. Phys. 49 29 (2016)

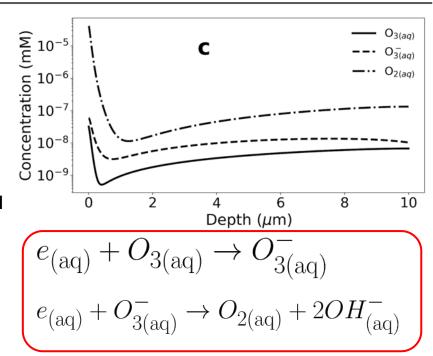
Results - Reactive Species Generation

• HO₂, H₂O₂, and OH are the most dominant electron scavengers via reactions:

$$e_{(aq)} + HO_2 \to HO_2^-$$

 $e_{(aq)} + H_2O_{2(aq)} \to OH_{(aq)} + OH_{(aq)}^-$
 $e_{(aq)} + OH_{(aq)} \to OH_{(aq)}^-$

- Hydrogen $(H_{2(aq)})$ reaches high concentrations in the liquid, as expected from electrolysis
- Oxidizing species (O₂, O₃) are quickly depleted in the interface layer by solvated electrons
 - Increasing solvated electron concentration in the liquid phase should decrease the concentration of oxidizing agents in the liquid



Solvated Electrons at the Water Interface

I. Aqueous Chemical Pathways

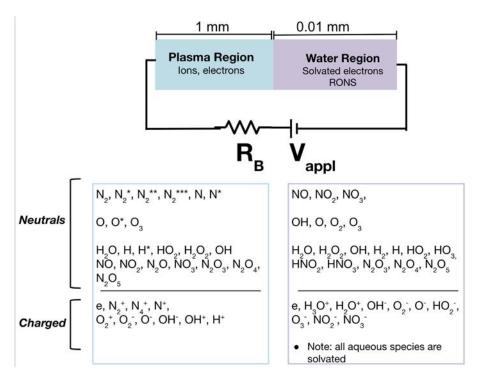
- Solvated electrons have been shown to play a dominant role in the plasma-water interface
- While solvated electrons clearly cause a decrease in oxygen species in the thin interface region (< 1 micron), they also open up additional pathways in the water

Based on the model results we expect that: Increasing electron current density will *decrease* delivery of O_3 and H_2O_2 due to aqueous chemical reaction pathways with solvated electrons.

$$e_{(aq)} + H_2O_{2(aq)} \to OH_{(aq)} + OH_{(aq)}^-$$

Case 2: Air/H₂O (humid air) plasma on liquid water

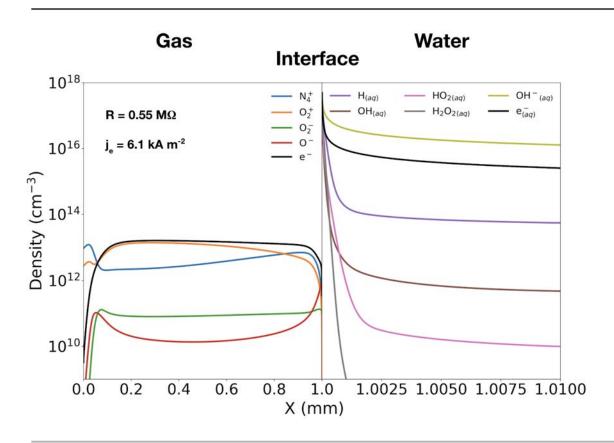
This case involves an atmospheric pressure mixture of nitrogen, oxygen, and water

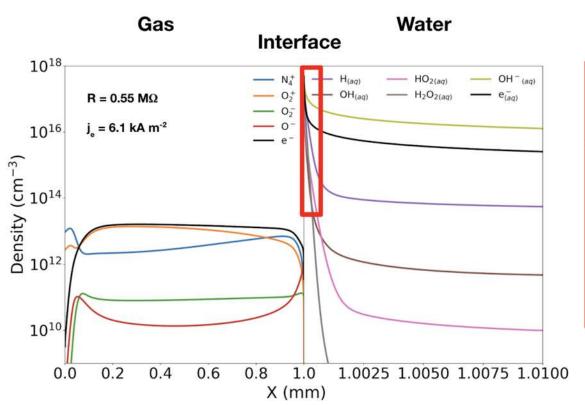

- 1D DC discharge, two region model
- Grounded wall at liquid boundary (x = 1.01 mm)
- \circ V_{appl} = -3 kV
- Both air and liquid chemistry models are adapted from Tian's 2015 thesis and Buxton et al [4] [7]

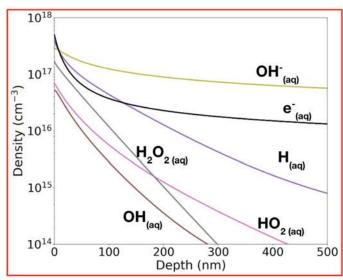
Humid air plasma model (N₂/O₂/H₂O)

- o 32 species, 187 reactions
- Nitrogen, water, and hydrogen: Itikawa database
- Oxygen: TRINITI database; both at: <u>www.lxcat.net</u>
- Water introduced with vapor pressure BC at liquid interface (amounts to ~1% humidity)

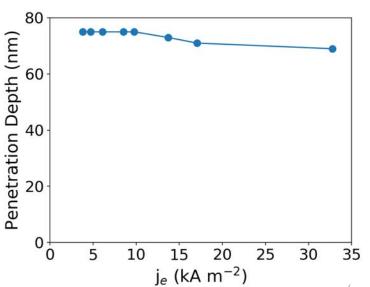
Water model

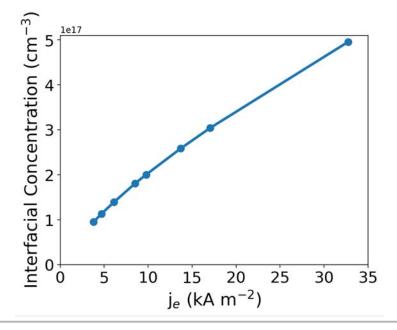

- o 29 species, 93 reactions
- Permittivity: $\varepsilon_r = 81$
- o Initial pH of 7 ($[H_3O^+_{aq}] = [OH^-_{aq}] = 5x10^{11} \text{ cm}^{-3}$)
- Solvation occurs instantly upon entering water phase


^[4] Tian, Wei. "MODELLING INTERACTIONS OF ATMOSPHERIC PRESSURE PLASMAS AND WITH LIQUIDS" PhD Dissertation. University of Michigan (2015)


^[7] Buxton, G. et al. "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals." Journal of Phys. Chem. Ref. Dat. 17 2 (1988)

Case 2: Air/H₂O (humid air) plasma on liquid water, density

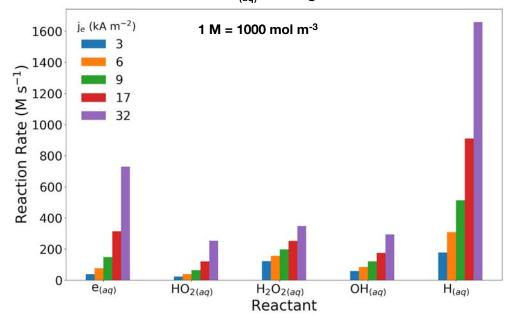

Case 2: Air/H₂O (humid air) plasma on liquid water, density



Solvated Electrons, Penetration Depth

- In all cases the solvated electrons quickly react within the first 100 nm
- Penetration depth* slightly decreases with electron current density
- 75 nm at 4 kA m⁻² to 69 nm at 33 kA m⁻²

*PD is here defined as 10% of the surface value, not classical "I" $\,n(x) = n_0 e^{(-x/l)}$

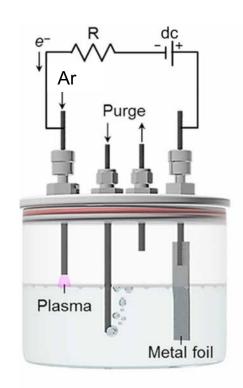

Solvated Electrons, Reaction Pathways

What is happening in the first 80 nm?

- The thin electron layer is very chemically active
- Electrons react significantly with all other radicals in the liquid phase
- Second order recombination rate increases quickly with electron concentration
- The terminal product of most reactions is hydroxide OH-

$$e_{(aq)} + HO_{2(aq)} \rightarrow HO_{2(aq)}^-$$

Dominant reactions with e_{(aq)*} averaged over first 80 nm



*Reaction also includes H₂O

$$e_{(aq)} + HO_{2(aq)}^- + H_2O \to OH_{(aq)} + 2OH_{(aq)}^-$$

Recently Started Validation of Plasma-Water Interaction Model

- The model presented in this work must be validated to ensure that it is accurately simulating plasma-liquid chemistry
- Experiments carried out by Prof. Sankaran's group (UIUC) are measure aqueous conditions (reactive oxygen species concentrations, pH) after plasma treatment
- The aqueous chemistry and plasma-water interaction model is compared to experimental measurements of aqueous species and pH
- Parametric scan of plasma parameters are performed to observe changes in reactive species production

[2] Hawtof, R. et al. "Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system." Asian Journal of Chemistry 31 2 (2019)

OLTP Webinar Apr 6, 2021

Conclusions

- Crane and Zapdos are two new, open-source, software applications available to the LTP community, which can be used for the simulation of Low Temperature Plasmas with complex Plasma Chemistry
- Crane and Zapdos were used to study Plasma-water interactions, allowing innovative features, such as:
 - Gas and liquid phases dynamically and implicitly coupled
 - Water affects discharge, and vice-versa

Future Work:

- Experimental validation of plasma-water model
 - Qualitative and semi-quantitative validation of the plasma-water model
 - Comparison to experimental measurements (Sankaran) of a plasma-water interface electrolytic cell
- Tackle the challenge of solving the coupled nature of plasma-water interface
 - Develop physically meaningful definition of solvated electron penetration depth, compatible with observations
 - Determine how solvated electrons affect the generation of selected reactive species in the water

References (1)

- [1] Oehmigen K. "Volume effects of atmospheric pressure plasma in liquids". IEEE Trans. Plasma Sci. 39 2646 (2011)
- [2] Rumbach, P. et al. "The solvation of electrons by an atmospheric-pressure plasma." Nature Communications 6 7248 (2015)
- [3] Foster, J. Plasma-based water purification: Challenges and prospects for the future." Physics of Plasmas 24 055501 (2017)
- [4] Lindsay, A. et al. "Fully coupled simulation of the plasma liquid interface and interfacial coefficient effects" J. Phys. D: Appl. Phys. 49 (2016) 235204 (9pp)
- [5] C. DeChant, S. Keniley, D. Curreli, K. Stapelmann, S. Shannon, Multi-physics simulation of the COST APPJ in the MOOSE framework, Bull. Am. Phys. Soc. 71th Annual Gaseous Electronic Conference, GT1.74, Portland, Oregon, Nov 5-9, 2018
- [6] Hagelaar, G. et al. "Boundary conditions in fluid models of gas discharges" Physical Review E. 62, 1 (2000)
- [7] C. Icenhour, S. Keniley, C. DeChant, C. Permann, A. Lindsay, R. Martineau, D. Curreli, S. Shannon. "Multi-Physics Object Oriented Simulation Environment (MOOSE)", Bull. Am. Phys. Soc. 71th Annual Gaseous Electronic Conference, BM2.1, Portland, Oregon, Nov 5-9, 2018

References (2)

- [8] S. Keniley, D. Curreli, C. DeChant, S. Shannon, "CRANE: a Novel MOOSE-based Open-Source tool for Plasma Chemistry Applications and Code Coupling", Bull. Am. Phys. Soc. 71th Annual Gaseous Electronic Conference, GT1.39, Portland, Oregon, Nov 5-9, 2018
- [9] Shane Keniley, Davide Curreli, Corey DeChant, Steven Shannon. "Numerical Simulations of Electron Transport across a Plasma-Water Interface using Zapdos-CRANE", Bull. Am. Phys. Soc. 61th Annual Meeting of the APS Division of Plasma Physics, BP10.107, Fort Lauderdale, Florida, October 21-25, 2019
- [10] Shane Keniley, Davide Curreli, Corey DeChant, and Steve Shannon, "Numerical Modeling of the Plasma-Liquid Interface using the Zapdos-CRANE Open-Source Package", 72nd Annual Gaseous Electronics Conference, College Station, Texas, October 28-November 1, 2019
- [11] Tian, W. MODELLING INTERACTIONS OF ATMOSPHERIC PRESSURE PLAS- MAS WITH LIQUIDS. Phd, University of Michigan, 2015.
- [12] Rumbach, P. et al. "Electrostatic Debye layer formed at a plasma-liquid interface." Physical Review E, 95(5):53203 (2017)
- [13] Gopalakrishnan, R. *et al.* "Solvated electrons at the atmospheric pressure plasma-water anodic interface." J. Phys. D: Appl. Phys. 49 29 (2016)