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Who we are

* Founded in 1998

» Span out of UC Irvine

» Funded by visionary investors

« 200+ scientists and engineers

* National lab-scale fusion device
* Technology spin-offs

 tae.com/research-library/
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As with the Space Race, Fusion is the genesis of
numerous pillars of technological innovation
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Agenda

 TAE Fusion Concept, Motivation and History

« Key Program Accomplishments

 Technology spin-offs



TAE's concept -beam-driven Field Reversed Configuration

* High plasma B ~ 1 (plasma pressure / B?)
« Compact and high power density
* Aneutronic fuel capability
* Indigenous large orbit particles

 Tangential Neutral Beam Injection
* Large orbit ion population
* |ncreased stability and reduced transport

* Significant engineering advantages that
translate to viable reactor economics




TAE's ultimate goal - p-"B fusion
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e p+TB 5 4He +4He + “He * Advantages
* (Almost) no neutrons
« Cross section larger than * Benign, readily available fuel
oreviously believed  Little radioactive waste

* Viable economics
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Key accomplishments

Established beam-driven high- FRC physics test bed with unmatched operating
flexibility

Demonstrated high-temperature FRC sustainment via Neutral Beam Injection
and edge biasing up to 30 ms (limited by the energy storage on-site)

 Edge biasing provides plasma MHD stabilization and sheared-flow suppression of turbulence

« Favorable transport scaling observed
Developed engineering knowhow to facilitate reactor design

Established collaboration with academia and industry to accelerate progress

« PPPL, UCI, UCLA, LLNL, ORNL, Univ. of Pisa, Univ. of Wisconsin, Nihon Univ., Univ. of
Washington, Budker Institute, Google, industrial partners



TAE experimental device evolution

Major development platforms integrate then best design
* Incremental steps for rapid innovation

Copernicus entering phased sequence of reactor

performance experiments

A, B, C-1
Early development
1998 -2000s

First full-scale machine
2009-2012

C-2V
Plasma Sustainment
2013-2015

TAE's current machine

* First plasma July 2017

¢ One year construction

e On time, on budget

» Scaling studies ongoing

Norman (C-2W)

Collisionless Confinement
Scaling

2016-2021

Copernicus

Reactor Plasma
Performance operating
on hydrogen plasma

2022+
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NORMAN (C-2W) — current device .

Inner divertors:
'

Upgraded Neutral Beams: 2 ML/s pumping

10 MW, 30 ms

Plasma-guns and biasing
electrodes (in both inner
and end divertors)

New confinement
vessel, skin time <3 ms

Magnetic Field upto O3 T
B T2t 5y/ster for Plasma dimensions-r,, L.  04,2-3 m
field ramp & active control : ]
P Density - n, 1-3x1012 m-3
Upgraded formation sections:
PY Temperature - T, over 4 keV

~15 mWb trapped flux



Typical experimental setup

Rotation and edge plasma
controlled via biasing
electrodes from divertors

Merged FRC sustained & heated
Starter FRCs formed in 2 by tangential injection in ion
formation sections and diamagnetic direction of neutral
tae() supersonically translated beams into outer core
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Advanced beam driven FRC enabled by fast ions
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Total pressure is maintained, while thermal pressure is
replaced by fast ion pressure, up to Peg/Pi ~ 1

Lifetime increases with NBI
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Clobal modes suppressed by edge biasing
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Fluctuation suppression via

E x

.~

e

B sheared flow

Strong ExB shearing rate due to plasma
gun biasing

Sheared ExB flow upshifts critical
gradient and reduces turbulence via

eddy shearing/decorrelation

Radial transport barrier at/outside the
separatrix
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Accelerator Technolog



Positive and negative-ion-based neutral beams for fusion
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« Low-energy beams (<150 keV) » Positive-ion-based (PNBI)

Mature technology, ~ 100 beams built mostly btw 1970-90's

Presently, TAE and Budker Institute (Russia) are the only commercial suppliers

 High-energy beams (> 150 keV) » Negative-ion-based (NNBI)

W .

Active R&D area; conventional design faces severe challenges

TAE and Budker developed and tested breakthrough solutions 15



TAE PNBI system is highly modular and flexible
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Reactor NNBI system tests and validation underway

High-energy beam prototype

P R

. 1A/400 keV /12 s achieved ' H-bear test bed

 Plasma neutralizer ~ 80% efficiency

Recuperator tube

 Photon neutralizer ~ 95% efficiency

« Recuperator tests staring

&) 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.0
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Accelerator technology for transformative cancer therapy
TAE Life Sciences

HEALTHY TISSUE CANCER CELL

Li“ PARTICLE

ALPHA PARTICLE

Boron neutron capture therapy NEUTRON

e TAE accelerator-based neutron source

» Vector drug

Can treat millions of patients with
harshest cancers

First clinical system is being
commissioned

Clinical trials to start in 2021

o\
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Electrostatic tandem accelerator is optimal for BNCT

Charge-exchange cell

- Tunable energy ~ 2.5 MeV at ~10 mA
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- Cs-free 15 mA H- ion source
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- Neutron-producing target: Li+ p = n + 'Be H

l
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- Neutron yield ~ 103 n/s

U
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- Offers an optimal therapeutic neutron beam

Tandem electrodes:
Nested shells biased
positive from ground
to half of beam energy

- Compact, simple, robust, and reliable

- Relatively inexpensive

HV power supply

g
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Power Management



Power management technology spin-off
Derived from Norman power supply development

Modular distributed energy 550 MW (500 KA, 1+ V)
topology with advanced
control algorithm m
- seconds '
5 minute -~
charge

J
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+ High energy storage
@hlllﬂ:—i%tﬂ:{ﬂﬂ: « High power demand
| | * Flexible load matching

Integrated Module:
- Storage, Control and Converter -
S?;II——IIIIH— autonomous module for distributed

— —  Excellent enerqgy efficiency & utilization
energy & control network @}—l|||||—__%j|-—||||||— 9y y

 Critical reliability & uptime capability
~

tae"’

21



TAE power management

Efficient solutions for energy storage and electric vehicles

* Decarbonization of economy requires
efficient solutions at scale for

 Energy storage
e Grid infrastructure

 Electric vehicles

TAE ACi-Power Pack Electric Motor

« TAE ACi-Power Pack consolidates the
powertrain by eliminating the need for all
other power electronics components used
in conventional battery-electric powertrains

Master ECU
o
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