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Overview

§ Plasma-Liquid Chemistry for Bio Applications
§ Organic matter in liquids becomes part of the chemistry

§ “Passive”: offering a target for reactions 
§ “Active”: cells actively change chemistry

2https://doi.org/10.1088/0963-0252/25/5/053002
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Motivation

§ Plasma Medicine: cell culture treatment
§ Cell medium different reactions than in water
§ How do cells impact the liquid chemistry?

§ Plasma Agriculture: treatment of water
§ How clean is the water? 
§ Transition to real-life applications

How does the chemistry change when organic 
matter is present? 3
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COST Reference Microplasma Jet

§ Designed as reference source: 
robust and reproducible

§ Allows to contextualize results
§ CCP, 13.56 MHz RF, He, He/H2O 

and He/O2 

§ 1 mm electrode distance, 30 mm 
plasma channel

§ Integrated matching network along 
with current and voltage probes for 
continuous monitoring

4
COST Reference Microplasma Jet

Golda J et al. Journal of Physics D: Applied Physics. 2016;49(8):84003.



Experimental Conditions

§ Total gas flow: 1 slm

§ Power constant at 750 mW

§ ~240 VRMS for He/O2 and He/H2O

§ ~215 VRMS for He

§ Liquid treatments:

§ 12-well plate, 1 ml treatment volume

§ 4 mm distance from nozzle to liquid

§ All measurements performed in triplicate
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O and OH 
in He/O2 and He/H2O

§ O (TALIF) and OH (LIF) in an open effluent 
and with a liquid interface present at 4 mm 
distance

§ O dominates in He/O2, OH in He/H2O

7Myers, B. et al. Journal of Physics D: Applied Physics 54 (2021): 145202
Stapelmann, K. et al. Journal of Physics D: Applied Physics 54 (2021): 434003
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Start simple: H2O2 formation in DI water

§ H2O2 in He/H2O plasma-treated 
sample is ~30x higher than He, 
~50x higher than He/O2

§ Corresponds well to OES and 
previously reported gas phase 
measurements*

8
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*Benedikt J et al. Plasma Sources Sci 
Technol. 2016;25(4):045013.



Isolating H2O2 origins using OH scavenger
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H2O2 is produced primarily in gas phase
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Isolating H2O2 origins using OH scavenger
§ OH scavengers: Terephtalic acid 

(TA) and spin-trap 5,5-Dimethyl-

1-pyrroline N-oxide (DMPO)

§ H2O2 ~ constant across solutions

§ ●
OH +

●
OH → H

2
O

2

(k = 5 x 10
9

M
-1

s
-1

)

§ DMPO +
●
OH → DMPO–OH 

(k = 4.3 x 10
9

M
-1

s
-1

)

§ H2O2 must be produced 

exclusively in the gas phase

10
Myers, B. et al. Journal of Physics D: Applied Physics 54.14 (2021): 145202
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Isolating H2O2 origins using OH scavenger

§ H2O2 varies significantly between 
solutions

§ Observed previously in phenol* 
§ H abstraction by O from C-H 

bonds
§ O enters liquid and reacts further 

to form H2O2

§ OH or HO2 as precursor?

11
*Hefny, M. et al. J. Phys. D: Appl. Phys. 2016;49(40):404002.

He/O2

Myers, B. et al. J. Phys. D: Appl. Phys. 54.14 (2021): 145202



Comparison DMPO, TA, Phenol

§ Ring structures
§ H abstraction by O from C-H 

bonds
§ O enters liquid and reacts further to 

form H2O2

§ When ring structures are present, 
H2O2 production increases – ring 
structures become part of the liquid 
chemistry 
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From Ring Structures to Cysteine
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§ Amino acid cysteine as simple model
§ He/H2O

§ up to 1 min.: DI ~ cys ~ cys + H2O2

§ 5 min: mock > DI >> cys
§ Cys consumed H2O2

§ Not if only H2O2 is present: short-
lived species necessary to initiate 
reactions

§ He/O2

§ DI water higher H2O2 concentration
§ Cys consumed H2O2

x4.2

x2

Stapelmann, K. et al. Journal of Physics D: Applied Physics 54 (2021): 434003



Cysteine Modifications

14
Stapelmann, K. et al. Journal of Physics D: Applied Physics 54 (2021): 434003

§ Native cysteine 
disappears 
completely after 5 
min He/H2O

§ Primary modification 
He/H2O: cystine and 
variations

§ Primary modification 
He/O2: oxidation of 
sulfur



Cysteine Modifications – Origin of Species
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Stapelmann, K. et al. Journal of Physics D: Applied Physics 54 (2021): 434003

§ Heavy water H2
18O 

as liquid
§ He/H2O: more 18O 

incorporated 
§ 18O due to 

hydrolysis, (V)UV or 
metastable impact, 
or 16OH H hopping



Increasing complexity – buffer & medium
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He/H2O He/O2

§ Cell culture medium (RPMI) and buffer (KPO4) used for plasma medicine 
experiments influence H2O2 production for He/O2

§ Likely due to O interacting with organics in the medium



Closer look
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RPMI cell medium: a lot of components! 
§ 3 amino acids with ring structures
§ 2 sulfur-containing amino acids

Glycine L-Isoleucine L-Tryptophan

L-Arginine L-Leucine L-Tyrosine

L-Asparagine L-Lysine L-Valine

L-Aspartic Acid L-Methionine

L-Cystine L-Phenylalanine Vitamins

L-Glutamine L-Proline Inorganic Salts

L-Histidine L-Serine Glucose

L-Hydroxyproline L-Threonine Glutathione

RPMI Medium



What does it mean for plasma medicine?
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Mock treatments to isolate effects – measure species in correct solution
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Ranieri P et al. Applied Sciences. 2020;10(6):2025.



What happens when cells are present? 
§ Intercomparison study COST jet and nsp-DBD

§ Completely different setups, different chemistry, …

§ Cell viability as starting point

§ Jurkat cells (3!104 cells per well)

§ Incubated for 24 hr prior to assesing cell viability

§ Image cytometry

§ Conditions with comparable cell viabilities: 

§ COST jet 2 min ~ nspDBD 45 Hz (10 s)

§ COST jet 4 min ~ nspDBD 75 Hz (10 s)
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Not only the cell viability is comparable, but also the mitochondrial
superoxide production in response to plasma treatment

COST jet 2 min ~ nspDBD 45 Hz (10 s)

nspDBD and COST jet 
- Cell produced chemistry
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§ As expected, the liquid chemistry is
completely different

§ Long-lived species such as H2O2
and nitrite not (exclusively) 
responsible for cell death

COST jet and nspDBD
- Liquid chemistry
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nspDBD - Liquid chemistry with cells

22
H. Mohamed et al. Cancers. 2021;13(10):2437.



Conclusions
§ Organic matter becomes part of the chemistry
§ Different types of organic matter affect chemistry differently

§ By offering a target for reactive species / precursors for other long-
lived species (e.g. OH / H2O2)

§ By providing new precursors to form other species (e.g. H + HO2 / 
H2O2)

§ Living cells actively contribute to liquid chemistry
§ By offering a target for reactive species
§ By uptake and neutralization of ROS 
§ By releasing reactive species (TBD) 23
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