

Design of a Three-phase Rotating Magnetic Field Power Processing Unit for Inductive Plasmoid Propulsion

Tate Gill, Joshua Woods, Christopher Sercel, and Benjamin Jorns University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI 48109

Motivation

The 3-Phase RMF PPU is designed for use in inductive plasmoid propulsion. The rotating field generates azimuthal currents in the propellant plasma and produces thrust via a Lorentz force interaction. Inductive propulsion is advantageous due to its lack of propellant dependence, and ability to trade I_{sp} and thrust in multi-mode operation [1]. Previous RMF propulsion schemes have used 2-

phase RMF antenna arrangements. The advantage of a 3-phase RMF system is to eliminate the spatial harmonics in the RMF and improve thruster performance [2].

UM RMF Thruster

Expected Performance

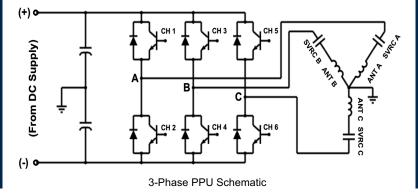
16 kW per phase

• Freq: 0-300 kHz

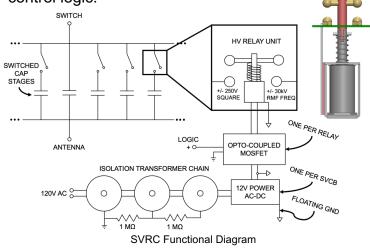
Max duty cycle: 10%
Peak current: 4 kA

• Pulse width: 100 µs

The 3-phase RMF PPU is the second iteration of a UM RMF supply. The new configuration adds a 3rd phase and allows for higher power, longer pulse times, and higher frequencies.


Three-phase PPU Design

The 3-Phase PPU configuration is a series-loaded resonant sine inverter, which generates kA level currents while only exposing the driving switches to several hundred volts. The primary circuit schematic consists of three half-bridge IGBT switching units fed by a backing DC capacitor bank and 3 switched variable resonant


3-Phase RMF PPU

capacitor banks (SVRCs) connected in series to the RMF antennas. The resonant capacitor banks are varied to form an LC oscillator at various RMF frequencies, which then resonates with the square wave from each half-bridge unit.

Switched Variable Resonant Capacitors

The SVRCs permit rapid changes of RMF frequency between test points in 20 kHz increments. They employ pulse film capacitors and custom high voltage solenoid relays. The relays are designed to withstand 20 kV rms under high vacuum and use an isolated power supply with optically isolated control logic.

References

[1] J.L. Rovey, et. al, J. P. Aero Sci. 118 (2020): 100627. [2] W.N. Hugrass, Aust. J. Phys. **39(4)**, 513-528 (1986).

Contact: tategill@umich.edu

Work supported by NASA Technology Graduate Research Opportunity 80NSSC20K1168

