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Feature analysis in relativistic laser-
plasma experiments utilizing 
machine learning methods



Statistical methods in high-rep-rate LWFA – genetic algorithm
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He, Z-H., et al. "Coherent control of plasma dynamics." Nature 

communications 6.1 (2015): 1-7.

Lin, J., et al. "Adaptive control of laser-wakefield accelerators 

driven by mid-IR laser pulses." Optics express 27.8 (2019): 
10912-10923.
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Apply machine learning to LWFA experimental data

• Machine learning vs. genetic algorithms?
• GA provides only local optimum while ML allows feature analysis

• GA throws away 90% of the data while ML utilizes all

He, Z-H., et al. "Coherent control of plasma 
dynamics." Nature communications 6.1 (2015): 1-7.
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Maris, A. D., et al. Finding Correlations in Inertial Confinement Fusion Experimental Data Using Machine Learning. No. LLNL-
PROC-791967. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2019.
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Supervised learning architectures

Neural network

Decision tree

Random forest
Gaussian process 
regression with kernels

Deep Jointly-Informed 
Neural Networks1

1Humbird, Kelli D., et al. "Deep neural network initialization with decision trees." IEEE trans. on neural networks and learning systems 30.5 (2018): 1286-1295.
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Feature dimensionality reduction

Zernike expansion Reproduced laser wavefront

Reduced feature (X) dimension = 15,
Label dimension = 1
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Feature Importance of Zernike coefficients
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❑ Calculate prediction error of model f:               

𝑒 = 𝐿 𝑦, 𝑓 𝑋

❑ For each feature i:
❑ Permute data values in feature i
❑ Generate permuted feature matrix 𝑥𝑝𝑒𝑟𝑚

❑ Calculate prediction error of model f: 

𝑒𝑝𝑒𝑟𝑚 = 𝐿 𝑦, 𝑓 𝑋𝑝𝑒𝑟𝑚

❑ Obtain importance of the 𝑖𝑡ℎ feature = 
𝑒𝑝𝑒𝑟𝑚 − 𝑒

❑ Sort importance of features in descending order

Molnar, Christoph. Interpretable Machine Learning. Lulu. com, 2020.
Order of Zernike polynomials

Importance



Evaluate model performance on every datapoint 
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Model performance against virtual measurement errors
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Summary

• Built four supervised learning regression models to predict the electron 
beam charge from the laser wavefront change 

• Evaluated model prediction : 𝑀𝑆𝐸 < 2 ∗ 10−3 for all models

• Random Forest fit our dataset better considering performances and 
computational cost

• ML enables feature analysis beyond just optimizing a target

• Ranked the importance of Zernike coefficients in this LWFA process

• Analyzed data quality by evaluating models on every datapoint

• Included virtual measurement error
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