Optimization of a Low Power ECR Thruster
Using Two-Frequency Heating

Motivation

Magnetic nozzles enable simple thruster designs, low
system masses, and can use a variety of propellants,
making them well suited for small satellite applications
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While previous studies have optimized these thrusters
by modifying geometry and magnetic field topology, In
this experiment we use custom Input waveforms to
Improve performance. This enables rapid Iteration
through many test points.

Two-Frequency Heating

This technigue, developed for highly charged Ion
sources, adds a second frequency to a typical ECR
discharge, creating two resonance zones. It has been
shown to suppress instabilities and increase ion yield;
however the underlying physics is not fully understood

[3].
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Experimental Setup

We use a coaxial ECR thruster
experiments at ONERA [2]. The Input signal Is
generated by two microwave signal generators
controlled by a computer interface. The system
bandwidth is 800-2500 MHz. Power is read by RMS
power meters and a spectrum analyzer. Absolute
thrust I1Is measured using a thrust stand that
Includes a wireless microwave power coupler to

avold cable deformation.
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Schematic of the microwave setup
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Optimization Technique

We ran two preliminary experiments:

» 1 frequency fixed power:

20 W

« 2 frequency fixed power: f; 15 W, f, 5 W
The thrust at each point was fed Iinto a surrogate-
based global optimization algorithm that selected

each new test point [4].
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Conclusions & Future Work

While the Initial two-frequency data does not show as
high thrust efficiency as single frequency heating,
most majority of the design space remains
unexplored. Upcoming experiments will involve many
times more data points to address this Issue.

Acknowledgments

This work was supported by NASA Space Technology
Research Fellowship grant SONSSC1/7K0157.

[1] S. N. Bathgate, M. M. M. Bilek, and D. R. Mckenzie, “Electrodeless
plasma thrusters for spacecraft: a review,” Plasma Sci. Technol., vol. 19,
no. 8, p. 083001, Aug. 2017.

[2] F. Cannat, T. Lafleur, J. Jarrige, P. Chabert, P.-Q. Elias, and D. Packan,
“Optimization of a coaxial electron cyclotron resonance plasma thruster
with an analytical model,” Phys. Plasmas, vol. 22, no. 5, p. 053503, May
2015.

[3] Alton, G. D., “Future prospects for ECR ion sources with improved
charge state distributions,” Tech. rep., Oak Ridge National Lab., TN, 1995.
[4] What Is Surrogate Optimization? - MATLAB &amp; Simulink. [Online].
Avallable: https://www.mathworks.com/help/gads/what-is-surrogate-
optimization.html.



