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Introduction Results: Single Step Results: Multiple Steps

» An Intermediate step enables a stronger shock In the target
material than without the step until reflected waves weaken It.
» Optimal shock strengthening occurs when the step density Is the

» Incorporating multiple steps can further strengthen the shock.
» Exponential density profiles optimize shock strengthening.

» Detalls of many planetary interior compositions remain unknown.
» Simulations predict superionic ice in Jovian planets, but accessing
these conditions experimentally is challenging [1-3].

» Objective: develop a method for extending experimental geometric mean of the densities of the left and right materials. Mp/ Mg,
access to extreme conditions found in planetary interiors.
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Figure 1. The hypothesized composition of the planet Neptune with superionic ice [4]. Position Position
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+= i - 15> i ungsten
g > .. PVECOmE)\rESSIOH | andig Diamond anvil cari?dee
L Superionic lces | 4 l 350 um l seat
= ' . . / ' : “Hy g
IE . Static Compression .-~ Ices - Stainjace 40 e Vﬁ—-uartz 1,1
o gaske 30-100 um 30 um _ _
0 100 200 300 Diarmond anvil Right-running

Pressure (Gpa) e

2 3 4 5 6
Number of Steps

0 50 100 0
Lagrangian z [pum)|

Pressure
Pressure

Figure 2: The thermodynamic path (left) and experimental schematic (right) of a diamond anvil cell.

Figure 10: Hyades simulation showing wave diagram
colored with pressure for three intermediate steps.

Figure 11: Shock strengthening vs number of steps
from theory and Hyades simulations.

Method of Analysis

Particle Velocity

Particle Velocity
» The method of characteristics (MoC) reduces PDEs to ODEs along

specific paths, enabling solutions to 1D nonlinear hydrodynamics.
» The Riemann problem describes a system after diaphragm release.
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Figure 5: The Hugoniots and isentropes that fix the states for increasing (left) and decreasing (right) density.
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Figure 3: The MoC solution for a wall-reflected rarefaction (left) and a solution to the Riemann problem (right).

Figure 6: Shock strengthening for a given interface
and intermediate step density.

Figure 7: Shock strengthening from theory (lines) and
Hyades simulations (open, ideal gas; filled, tabular).
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