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Electrospray thrusters are electrohydrodynamic — Posterior distributions inferred from published
devices that extract charged particles from a ypmb(x\e I) x prob(8]I) alll gsfentund\?\m;dICtuesdatee)éper\l,:,?;ntatlheem:;?,\l;
conductive liquid to produce thrust In space. In prob(X|I) i h experimental data, predictions improved.

principle, this process Is more efficient and 0: mod)?' gggmeters
scalable than other electric propulsion devices. I : background knowledge
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r h See posteriors on left.
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Reduced-fidelity modeling engenders physical Lion = Liono + (
uncertainty by simplifying physics.
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Conclusmns

Model Inputs: 1. Bayesian inference can be used to describe the

CR V: emitter voltage Cp: scale hyd. Imped.
I: current (ionic or jet) V,: onset voltage

physical uncertainty of reduced-fidelity models.

1/2  Q:vol. flow rate I,: onset/scale current | 2. Performance Is highly sensitive to uncertain device
How do we rigorously account for this Lioe = @ Ligrg (Q> P e tonsion 0 scale vol. flow rate geometry, motivating a probabilistic problem.
. ) . emitier geometr .-
uncertainty? Qo 1o ° Y 1 3. Additional model development may be necessary

to capture other phenomena.
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Can we use data to update our state of i=(N,..—1) (1 ("base—"o)) +1
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