
                        

                   

 

 

 

 

 

 

 

 
  
 
  
  
 
  
 
  
 
 
  
  
 

   
  

Electrospray thrusters are electrohydrodynamic

devices that extract charged particles from a

conductive liquid to produce thrust in space. In

principle, this process is more efficient and

scalable than other electric propulsion devices.

But electrosprays are small, requiring arrays of

102-104 individual emitters. At this scale, lifetime

and performance can be limited by physical and

manufacturing uncertainty. We aim to address

this problem with a robust design optimization

and testing loop.

We focus here on updating reduced-fidelity 

models given new data.
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Reduced-fidelity modeling engenders physical

uncertainty by simplifying physics.

1. How do we rigorously account for this

uncertainty?

2. Can we use data to update our state of

knowledge?

3. How can we use our knowledge to credibly

predict device performance?

Results

1. Bayesian inference can be used to describe the

physical uncertainty of reduced-fidelity models.

2. Performance is highly sensitive to uncertain device

geometry, motivating a probabilistic problem.

3. Additional model development may be necessary

to capture other phenomena.
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Bayes’ Theorem:

prob 𝜃 𝑋, 𝐼) =
prob 𝑋 𝜃, 𝐼) × prob 𝜃 𝐼

prob 𝑋 𝐼
𝜃: model parameters

𝑋: data
𝐼 : background knowledge

Model uncertain from experimental 
error and simplification 

Suppose we have a data set, 𝑋

Propose a simplified model:

𝑦 = 𝑚𝑥 + 𝑏

𝑚 = 1 ± 0.5
𝑏 = 0.5 ± 0.1

𝑚, 𝑏

Sample Many Times to 
Make Predictions

Posterior distributions over 
parameters

𝑚, 𝑏 𝑚, 𝑏

𝑚, 𝑏 𝑚, 𝑏

𝑚, 𝑏

𝑚, 𝑏

Use existing modeling framework

ESPET

𝑰𝒊𝒐𝒏 = 𝑰𝒊𝒐𝒏,𝟎 + 𝜻
𝑽 − 𝑽𝟎
𝑪𝑹

𝑰𝒋𝒆𝒕 = 𝜶 𝑰𝒋𝒆𝒕,𝟎
𝑸

𝑸𝟎

𝟏/𝟐

𝒊 = 𝑵𝒎𝒂𝒙 − 𝟏 𝟏 −
𝒓𝒃𝒂𝒔𝒆 − 𝒓𝟎

𝒃𝟎

𝟒

+ 𝟏

𝒓𝒃𝒂𝒔𝒆 =
𝟒𝜸𝒂𝟐 𝐚𝐭𝐚𝐧𝐡𝟐(𝜼𝟎) 𝟏 − 𝜼𝟎

𝟐 𝟐

𝜺𝟎𝑽
𝟐

Model Inputs:

Sampling from the revised

posterior distributions more

closely matched empirical

data (see left). Considering

these uncertainties creates

a prediction envelope that

encodes our knowledge.

Extending this framework

to additional models and

uncertain parameters could

enable robust design.

Posterior distributions inferred from published

data underpredicted experimental emitter

current. When updated with the new

experimental data, predictions improved.

Training data indicated that the

ionic current scaling is highly

sensitive to device geometry,

which was considered certain.
The analysis was

adjusted to exclude

the ionic training data.

See posteriors on left.
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𝑽: emitter voltage
𝑰: current (ionic or jet)
𝑸: vol. flow rate
𝒓𝟎: pore radius
𝜸: surface tension

𝑪𝑹: scale hyd. Imped.
𝑽𝟎: onset voltage
𝑰𝟎: onset/scale current
𝑸𝟎: scale vol. flow rate
𝒂, 𝜼𝟎: emitter geometry


