Phase-Contrast Imaging of Hydrodynamic Shocks in Water with a Betatron X-ray Source*

- M. D. Balcazar ^a, Y. Ma ^a, A. G. R Thomas ^a, J. Nees ^a, H -E. Tsai ^b, T. Ostermayr ^b,
- C. G. R. Geddes ^b, C. B. Schroeder ^b, T. Schenkel ^b, E. Esaray ^b, C. Todd ^c, N. Trantham ^c and C. C. Kuranz ^c
 - (a) Gerard Mourou Center for Ultrafast Optical Science, University of Michigan (balcazar@umich.edu)
 - (b) BELLA Center, Lawrence Berkeley National Laboratory
 - (c) Nuclear Engineering and Radiological Sciences Department, University of Michigan

Laser wakefield accelerators (LWFA) are a promising alternative for generating bright radiation sources at a fraction of the size and cost of conventional synchrotron-like facilities. The X-ray bursts emitted from a LWFA have sub-micron size, femto-second duration and low beam divergence, thus making them suitable for imaging small-scale dynamic phenomena. In this work we will image the evolution of hydrodynamic shock waves produced by the interaction of a long laser pulse with a stream of water. By taking advantage of the unique properties of plasma-based accelerators, the X-ray pulses will capture the full dynamic evolution of the propagating shock. We have made preliminary measurements and simulations of electron beam and X-ray characteristics, are developing a continuous carbon-free (water) target, and have performed radiograph hydrodynamic simulations of the laser-target interaction using CRASH software.

*Supported by the U.S. Department of Energy Office of Science, under Contract No. DE-AC02-05CH11231 and DE-SC0020237, as well as by Fusion Energy Science LaserNetUS.

References

- [1] R.P. Drake, et al. Physics of Plasmas, 11, 2829 (2837, (2004).
- [2] C. C. Kuranz, et al. Astrophysical Journal, 696, 749 (759, (2009).
- [3] C. A. Di Stefano, et al. Appl. Phys. Lett., 106, 114103, (2015).
- [4] W. C. Wan et al. Physical Review Letters, 115 5001, (2015).
- [5] C.C. Kuranz, et al. Nature Communications, 9, 1564, (2018).
- [6] H.-S. Park et al., Physics of Plasmas, 13, 056309, (2006).
- [7] J. Workman et al., Review of Scientic Instruments, 74, 2165, (2003).
- [8] C.C. Kuranz et al., Review of Scientic Instruments, 77, 10E327, (2006).
- [9] A. Casner et al., Physics of Plasmas, 22, 056302, 2014.
- [10] C. Stoeckl, et al. Review of Scientic Instruments, 24, 2012.
- [11] S. Fourmaux et al., Optics Letters 36, 2426 (2011).
- [12] J.M. Cole et al., Scientic Reports 5, 13244 (2015).
- [13] J.C. Wood et al., Scientic Reports 8, 11010 (2018).
- [14] S. N. Luo et al., Review of Scientic Instruments 83, 7 (2012).
- [15] A. Schropp et al., Scientic Reports 5, 11089 (2015).
- [16] F. Albert and A.G.R. Thomas, Plasma Phys. Contr. Fusion 58, 103001 (2016).