Contact Engineering in 2D-Material-Based Electrical Contacts*

Sneha Banerjee a, Liemao Cao b, Yee Sin Ang b, L. K. Ang b and Peng Zhang a

- (a) Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824-1226, USA (pz@egr.msu.edu)
- (b) Science, Math and Technology, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372

The engineering of efficient electrical contact to two-dimensional (2D) layered materials is crucial for the development of industrial-grade 2D-material-based electronics and op-

toelectronics. The undesirably large contact resistance, in particular, is a major obstacle and needs to be minimized.

We develop a new model to quantify electrical contact resistance and current distribution for 2D/2D and 2D/3D metal/semiconductor contact interfaces, based on a self-consistent transmission line model (TLM) [1] coupled with the thermionic charge injection model [2] of 2D materials (Figs. 1a and 1b). Results are validated with existing experimental works. We further model the effect of interfacial roughness at the 2D/3D electrical contact by including a Schottky barrier height (SBH) fluctuation term, i.e. $\Phi_B \to \Phi_B + \Delta \Phi_B$, where $\Delta \Phi_B$ is calculated by assuming that the SBH fluctuation follows a Gaussian distribution [3].

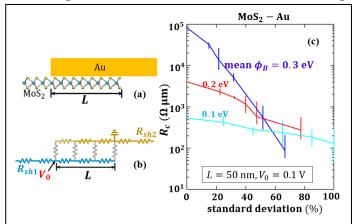


Figure 1 – (a) A parallel, partially overlapped electric contact between monolayer MoS₂ (2D semiconductor) and thin film gold (3D metal); (b) its transmission line model. (c) Contact resistance R_c as a function of interfacial surface roughness (standard deviation/ ϕ_B) for different mean values of Schottky barrier height ϕ_B . Here, applied voltage $V_0 = 0.1$ V, and contact length L = 50 nm. [3]

Figure 1c shows the SBH variation has a dramatic effect on the contact resistance. In general, R_c is reduced significantly in the presence of roughness. Such reduction is particularly effective for MoS₂/Au contact with large SBH (e.g. 0.3 eV).

* This work was supported by AFOSR YIP Award No. FA9550-18-1-0061 and A*STAR AME IRG Grant (A1783c0011), Singapore MOE Tier 2 Grant (2018-T2-1-007).

References

- [1] S. Banerjee, J. Luginsland, and P. Zhang, Sci. Rep. 9, 14484 (2019).
- [2] Y.S. Ang, H.Y. Yang, and L.K. Ang, Phys. Rev. Lett. 121, 056802 (2018).
- [3] S. Banerjee, L. Cao, Y. S. Ang, L. K. Ang, and P. Zhang, Phys. Rev. Appl. 13, 064021 (2020).