Exact Theory for Pulsed Laser Induced Photoemission from Biased Surface*
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Photoelectron emission from nanostrucutres triggered by ultrafast laser fields enables the
spatiotemporal control of electron motion in femtosecond and nanometer scales. It is important to
ultrafast electron microscopy, free-electron lasers and novel nano-vacuum devices [1-3]. For ul-

trashort pulsed laser induced photoemission, numeri-
cal simulations are typically implemented to study the
emission property. Simplified Fowler-Nordheim
based models are widely used to calculate the photoe-
mission rate, but it works only in the strong optical
field regime. To clearly reveal the underlying physics
in different emission regimes, a general theory under
ultrashort pulsed condition is highly desirable.

Here, we construct an exact analytical theory for
the photoelectron emission from a dc biased surface
illuminated by few-cycle laser pulses, by solving the
time-dependent Schrédinger equation [4, 5]. The sin-
gle formulation is valid from photon-driven electron
emission in low intensity optical fields to field-driven
emission in high intensity optical fields. Our calcula-
tions exhibit the coherent interaction of neighboring
laser pulses on the photoelectron emission (Fig. 1) and
recover the experimentally measured carrier-enve-
lope-phase sensitivity [6] accompanied by a m phase
shift in the optical-field regime (Fig. 2). We also find
adding a large dc field to the photoemitter is able to
greatly enhance the photoemission current and shorten
the electron emission pulse.
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Figure 1 — Total emission charge density
Q per pulse due to a laser pulse train, as a
function of the ratio of time separation T
between adjacent laser pulses over the la-
ser period T,,. Here, T, is fixed as 2.67 fs.
The oscillatory behavior of Q (enlarged in
the inset) is due to the coherent interaction
between neighboring pulses.
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Figure 2 — (a) Magnitude of carrier-enve-
lope phase (CEP) modulation on the total
emission charge Qmax - Qmin as a function
of laser field F; for different pulse dura-
tion 7,,; (b) Phase of CEP modulation on
the photoemission charge £Q as a fun-
ction of F; for different ,,.
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