Development of a Gas-Puff Z-Pinch Experiment for the 1-MA, 100-ns MAIZE Linear Transformer Driver*

<u>Akash P. Shah</u> ^a, Mary K. Bossard ^b, Brendan J. Sporer ^b, George V. Dowhan ^a, Kristi W. Elliott ^c, Mahadevan Krishnan ^c, Nicholas M. Jordan ^b and Ryan D. McBride ^{a, b}

- (a) Applied Physics, University of Michigan (akashah@umich.edu)
- (b) Nuclear Engineering and Radiological Sciences, University of Michigan
 - (c) Alameda Applied Sciences Corporation

The Z-machine at Sandia National Laboratories is instrumental in plasma physics research across a range of applications. University-scale z-pinch experiments, such as gas-puff z-pinches, can inform the high-value experiments conducted on the Z facility. A gas-puff z-pinch requires gas to be puffed into the anode-cathode gap, which is then pulsed with a high voltage [1]. The gas is ionized, accelerated, and compressed as the current flows across the electrodes, allowing for study of pinch phenomena including fusion reactions [2]. The initial ionization condition of the gas-puff prior to compression is poorly understood. Additionally, how this affects fusion, which is largely the result of micro-pinch instabilities, is also poorly understood. We report on the preliminary results from the newly developed experimental capability on the MAIZE Linear Transformer Driver at the University of Michigan

* Work supported in part by a seed grant from the Michigan Memorial Phoenix Project and the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0003764.

References

- [1] M. Krishnan, "The Dense Plasma Focus: A Versatile Dense Pinch for Diverse Applications", IEEE Trans. Plasma Sci. **40**, 3189 (2012).
- [2] J. Giuliani, "A Review of the Gas-Puff Z-Pinch as an X-Ray and Neutron Source", IEEE Trans. Plasma Sci. 43, 2385 (2015).